STABILITY IN YANG-MILLS THEORIES

被引:62
作者
TAUBES, CH
机构
关键词
D O I
10.1007/BF01211160
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:235 / 263
页数:29
相关论文
共 32 条
[1]  
Agmon S., 1965, ELLIPTIC BOUNDARY VA
[2]   TOPOLOGICAL ASPECTS OF YANG-MILLS THEORY [J].
ATIYAH, MF ;
JONES, JDS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 61 (02) :97-118
[3]   SELF-DUALITY IN 4-DIMENSIONAL RIEMANNIAN GEOMETRY [J].
ATIYAH, MF ;
HITCHIN, NJ ;
SINGER, IM .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 362 (1711) :425-461
[4]  
Aubin T., 1982, MONGE AMPERE EQUATIO, V252
[5]   STABILITY AND ISOLATION PHENOMENA FOR YANG-MILLS FIELDS [J].
BOURGUIGNON, JP ;
LAWSON, HB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 79 (02) :189-230
[6]   STABILITY AND GAP PHENOMENA FOR YANG-MILLS FIELDS [J].
BOURGUIGNON, JP ;
LAWSON, HB ;
SIMONS, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1979, 76 (04) :1550-1553
[7]  
BOURGUIGNON JP, 1982, ANN MATH STUD, V102
[8]   AXIAL ANOMALIES AND INDEX THEOREMS ON OPEN SPACES [J].
CALLIAS, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 62 (03) :213-234
[9]  
DETURCK DM, 1981, ANN SCI ECOLE NORM S, V14, P249
[10]  
EELLS J, HARMONIC MAPS SURFAC