RATES OF EIGENVALUES ON A DUMBBELL DOMAIN - SIMPLE EIGENVALUE CASE

被引:32
作者
ARRIETA, JM [1 ]
机构
[1] GEORGIA INST TECHNOL,SCH MATH,CTR DYNAM SYST & NONLINEAR STUDIES,ATLANTA,GA 30332
关键词
D O I
10.2307/2155021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain the first term in the asymptotic expansion of the eigenvalues of the Laplace operator in a typical dumbbell domain in R(2). This domain consists of two disjoint domains Omega(L), Omega(R) joined by a channel R(e)psilon of height of the order of the parameter epsilon. When an eigenvalue approaches an eigenvalue of the Laplacian in Omega(L) boolean OR Omega(R), the order of convergence is epsilon, while if the eigenvalue approaches an eigenvalue which comes from the channel, the order is weaker:epsilon\In epsilon\. We also obtain estimates on the behavior of the eigenfunctions.
引用
收藏
页码:3503 / 3531
页数:29
相关论文
共 22 条
[1]  
Arrieta J.M., 1991, THESIS GEORGIA I TEC
[2]   EIGENVALUE PROBLEMS FOR NONSMOOTHLY PERTURBED DOMAINS [J].
ARRIETA, JM ;
HALE, JK ;
HAN, Q .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 91 (01) :24-52
[3]  
ARRIETA JM, 1995, J DIFFERENTIAL EQUAT, V117
[4]  
BABUSKA I, 1965, CZECH MATH J, V15, P169
[5]   SCATTERING FREQUENCIES OF RESONATORS [J].
BEALE, JT .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1973, 26 (04) :549-563
[6]  
BROWN R, EIGENVALUES RESONANC
[7]   SPECTRA OF DOMAINS IN COMPACT MANIFOLDS [J].
CHAVEL, I ;
FELDMAN, EA .
JOURNAL OF FUNCTIONAL ANALYSIS, 1978, 30 (02) :198-222
[8]  
COURANT R, 1953, METHODS MATH PHYSICS, V1
[9]   COLLAPSING OF RIEMANNIAN-MANIFOLDS AND EIGENVALUES OF LAPLACE OPERATOR [J].
FUKAYA, K .
INVENTIONES MATHEMATICAE, 1987, 87 (03) :517-547
[10]  
Gilbarg D., 1977, ELLIPTIC PARTIAL DIF, V224