ORTHOGONAL POLYNOMIALS AND A DISCRETE BOUNDARY-VALUE PROBLEM-II

被引:14
作者
SZWARC, R
机构
关键词
ORTHOGONAL POLYNOMIALS; RECURRENCE FORMULA;
D O I
10.1137/0523053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {P(n)}n=0 infinity be a system of polynomials orthogonal with respect to a measure-mu on the real line. Then P(n) satisfy the three-term recurrence formula xP(n) = gamma(n)P(n+1) + beta(n)P(n) + alpha(n)P(n-1). Conditions are given on the sequence alpha(n), beta(n), and gamma(n) under which any product P(n)P(m) is a linear combination of P(k) with positive coefficients. The result is applied to the measures d-mu(x) = (1-x2)alpha Absolute value of x 2-beta + 1 dx and d-mu(x) = Absolute value of x 2-alpha + 1 e-x2 dx, alpha, beta > -1. As a corollary, a Gasper result is derived on the Jacobi polynomials P(n)(alpha,beta) with alpha greater-than-or-equal-to beta and alpha + beta + 1 greater-than-or-equal-to 0.
引用
收藏
页码:965 / 969
页数:5
相关论文
共 9 条
[1]  
ASKEY R, 1970, LINEARIZATION PRODUC, P223
[2]  
ASKEY R, 1971, CAN J MATH, V23, P119
[3]  
Askey Richard, 1975, REGIONAL C SERIES AP, V21, p[viii, 110]
[4]  
Erdlyi A., 1953, HIGHER TRANSCENDENTA, VII
[5]  
Favard J, 1935, CR HEBD ACAD SCI, V200, P2052
[6]   LINEARIZATION OF PRODUCT OF JACOBI POLYNOMIALS .1. [J].
GASPER, G .
CANADIAN JOURNAL OF MATHEMATICS, 1970, 22 (01) :171-&
[7]   LINEARIZATION OF PRODUCT OF JACOBI POLYNOMIALS .2. [J].
GASPER, G .
CANADIAN JOURNAL OF MATHEMATICS, 1970, 22 (03) :582-&
[8]  
Szego G., 1975, AM MATH SOC C PUBL, V23
[9]  
SZWARC R, 1992, SIAM J MATH ANAL, V23, P959, DOI 10.1137/0523052