Multifunctional interfacial molecular bridge enabled by an aggregation-induced emission strategy for enhancing efficiency and UV stability of perovskite solar cells

被引:0
作者
Shuhang Bian [1 ]
Yuqi Wang [1 ]
Fancong Zeng [1 ]
Zhongqi Liu [1 ]
Bin Liu [1 ]
Yanjie Wu [1 ]
Long Shao [1 ]
Yongzhi Shao [1 ]
Huan Zhang [1 ]
Shuainan Liu [1 ]
Jin Liang [1 ]
Xue Bai [1 ]
Lin Xu [1 ]
Donglei Zhou [1 ]
Biao Dong [1 ]
Hongwei Song [1 ,2 ]
机构
[1] State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University
[2] College of Science, Shanghai University
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TM914.4 [太阳能电池];
学科分类号
080502 ;
摘要
The interface defects between the electron transport layer(ETL) and the perovskite layer,as well as the low ultraviolet(UV) light utilization rate of the perovskite absorption layer,pose significant challenges for the commercialization of perovskite solar cells(PSCs).To address this issue,this paper proposes an innovative multifunctional interface modulation strategy by introducing aggregation-induced emission(AIE) molecule 5-[4-[1,2,2-tri[4-(3,5-dicarboxyphenyl)phenyl]ethylene] phenyl]benzene-1,3-dicarboxylic acid(H8ETTB) at the SnO2ETL/perovskite interface.Firstly,the interaction of H8ETTB with the SnO2surface,facilitated by its carboxyl groups,is effective in passivating surface defects caused by noncoord inated Sn and O vacancies.This interaction enhances the conductivity of the SnO2film and adjusts energy levels,leading to enhanced charge carrier transport.Simultaneously,H8ETTB can passivate noncoord inated Pb2+ions at the perovskite interface,promoting perovskite crystallization and reducing the interface energy barrier,resulting in a perovskite film with low defects and high crystalline quality.More importantly,the H8ETTB molecule,can convert UV light into light absorbable by the perovskite,thereby reducing damage caused by UV light and improving the device’s utilization of UV.Consequently,the champion PSC based on SnO2-H8ETTB achieves an impressing efficiency of 23.32%and significantly improved photostability compared with the control device after continuous exposure to intense UV radiation.In addition,the Cs0.05(FA0.95MA0.05)0.95Pb(I0.95Br0.05)3based device can achieve maximum efficiency of 24.01%,demonstrating the effectiveness and universality of this strategy.Overall,this innovative interface bridging strategy effectively tackles interface defects and low UV light utilization in PSCs,presenting a promising approach for achieving highly efficient and stable PSCs.
引用
收藏
页码:588 / 595
页数:8
相关论文
共 13 条
  • [1] 24.8%-efficient planar perovskite solar cells via ligand-engineered TiO2 deposition[J] Huang Hao;Cui Peng;Chen Yan;Yan Luyao;Yue Xiaopeng;Qu Shujie;Wang Xinxin;Du Shuxian;Liu Benyu;Zhang Qiang;Lan Zhineng;Yang Yingying;Ji Jun;Zhao Xing;Li Yingfeng;Wang Xin;Ding Xunlei;Li Meicheng Joule 2022,
  • [2] Efficient and stable perovskite solar cells with a high open-circuit voltage over 1.2 V achieved by a dual-side passivation layer.[J] Kim JuHyeon;Kim Yong Ryun;Kim Juae;Oh ChangMok;Hwang InWook;Kim Jehan;Zeiske Stefan;Ki Taeyoon;Kwon Sooncheol;Kim Heejoo;Armin Ardalan;Suh Hongsuk;Lee Kwanghee Advanced materials (Deerfield Beach; Fla.) 2022,
  • [3] Origins and influences of metallic lead in perovskite solar cells[J] Liang Jiwei;Hu Xuzhi;Wang Chen;Liang Chao;Chen Cong;Xiao Meng;Li Jiashuai;Tao Chen;Xing Guichuan;Yu Rui;Ke Weijun;Fang Guojia Joule 2022,
  • [4] Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes[J] Min Hanul;Lee Do Yoon;Kim Junu;Kim Gwisu;Lee Kyoung Su;Kim Jongbeom;Paik Min Jae;Kim Young Ki;Kim Kwang S.;Kim Min Gyu;Shin Tae Joo;Il Seok Sang Nature 2021,
  • [5] Modulation of perovskite crystallization processes towards highly efficient and stable perovskite solar cells with MXene quantum dot-modified SnO2[J] Yang Yingguo;Lu Haizhou;Feng Shanglei;Yang Lifeng;Dong Hua;Wang Jiaou;Tian Chen;Li Lina;Lu Hongliang;Jeong Jaeki;Zakeeruddin Shaik M.;Liu Yuhang;Gratzel Michael;Hagfeldt Anders ENERGY & ENVIRONMENTAL SCIENCE 2021,
  • [6] Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells[J] Jeong Jaeki;Kim Minjin;Seo Jongdeuk;Lu Haizhou;Ahlawat Paramvir;Mishra Aditya;Yang Yingguo;Hope Michael A.;Eickemeyer Felix T.;Kim Maengsuk;Yoon Yung Jin;Choi In Woo;Darwich Barbara Primera;Choi Seung Ju;Jo Yimhyun;Lee Jun Hee;Walker Bright;Zakeeruddin Shaik M.;Emsley Lyndon;Rothlisberger Ursula;Hagfeldt Anders;Kim Dong Suk;Grätzel Michael;Kim Jin Young Nature 2021,
  • [7] Multi-functional transparent electrode for reliable flexible perovskite solar cells[J] Gill Sang Han;Seongha Lee;Matthew Lawrence Duff;Fen Qin;Minlin Jiang;Guangyong Li;Jung-Kun Lee Journal of Power Sources 2019,
  • [8] Exploring low-temperature processed a-WO x /SnO 2 hybrid electron transporting layer for perovskite solar cells with efficiency >20.5%[J] Fengyou Wang;Yuhong Zhang;Meifang Yang;Jinyue Du;Leilei Xue;Lili Yang;Lin Fan;Yingrui Sui;Jinghai Yang;Xiaodan Zhang Nano Energy 2019,
  • [9] High-Performance Planar Perovskite Solar Cells with Negligible Hysteresis Using 2;2;2-Trifluoroethanol-Incorporated SnO2[J] Yigang Luan;Xiaohui Yi;Peng Mao;Yuanzhi Wei;Jing Zhuang;Ningli Chen;Tao Lin;Cheng Li;Jizheng Wang iScience 2019,
  • [10] CsPbBr 3 perovskite nanoparticles as additive for environmentally stable perovskite solar cells with 20.46% efficiency[J] Yanbo Gao;Yanjie Wu;Hongbin Lu;Cong Chen;Yue Liu;Xue Bai;Lili Yang;William W. Yu;Qilin Dai;Yu Zhang Nano Energy 2019,