Doubly resonant second-harmonic generation in a fiber-based tunable open microcavity

被引:0
作者
孔欣航 [1 ]
刘卓俊 [2 ]
宋丽军 [1 ]
邱贵鑫 [1 ]
王栩莹 [1 ]
马剑涛 [1 ]
魏敦钊 [1 ]
刘进 [1 ]
机构
[1] State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University
[2] State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University
基金
国家重点研发计划; 中国国家自然科学基金; 中国博士后科学基金;
关键词
D O I
暂无
中图分类号
TN253 [光纤元件];
学科分类号
0702 ; 070207 ;
摘要
Microcavities constructed from materials with a second-order nonlinear coefficient have enabled efficient second-harmonic(SH) generation at a low power level. However, it is still technically challenging to realize double resonance with large nonlinear modal overlap in a microcavity. Here, we propose a design for a robust, tunable, and easy coupling double-resonance SH generation based on the combination of a newly developed fiber-based Fabry–Perot microcavity and a sandwich structure, whose numerical SH conversion efficiency is up to 3000% W-1. This proposal provides a feasible way to construct ultra-efficient nonlinear devices for generation of classical and quantum light sources.
引用
收藏
页码:115 / 121
页数:7
相关论文
共 45 条
  • [1] Nonlinear photonics with metasurfaces.[J].POLINA VABISHCHEVICH;YURI KIVSHAR;.Photonics Research.2023, 02
  • [2] Emerging material platforms for integrated microcavity photonics.[J].Jin Liu;Fang Bo;Lin Chang;Chun-Hua Dong;Xin Ou;Blake Regan;Xiaoqin Shen;Qinghai Song;Baicheng Yao;Wenfu Zhang;Chang-Ling Zou;Yun-Feng Xiao;.Science China(Physics;Mechanics & Astronomy).2022, 10
  • [3] Advances in on-chip photonic devices based on lithium niobate on insulator.[J].JINTIAN LIN;FANG BO;YA CHENG;JINGJUN XU;.Photonics Research.2020, 12
  • [4] Second-harmonic generation and manipulation in lithium niobate slab waveguides by grating metasurfaces.[J].BIN FANG;HANMENG LI;SHINING ZHU;TAO LI;.Photonics Research.2020, 08
  • [5] Second-harmonic generation using d_(33) in periodically poled lithium niobate microdisk resonators.[J].ZHENZHONG HAO;LI ZHANG;WENBO MAO;ANG GAO;XIAOMEI GAO;FENG GAO;FANG BO;GUOQUAN ZHANG;JINGJUN XU;.Photonics Research.2020, 03
  • [6] Ultrahigh-Q Lead Halide Perovskite Microlasers
    Tang, Haijun
    Wang, Yuhan
    Chen, Yimu
    Wang, Kaiyang
    He, Xianxiong
    Huang, Can
    Xiao, Shumin
    Yu, Shaohua
    Song, Qinghai
    [J]. NANO LETTERS, 2023, 23 (08) : 3418 - 3425
  • [7] Enhancement of spontaneous emission from CdSe/ZnS quantum dots through silicon nitride photonic crystal cavity based on miniaturized bound states in the continuum
    Qiu, Guixin
    Wei, Dunzhao
    Liu, Zhuojun
    Liu, Jin
    [J]. NANOSCALE, 2023, 15 (08) : 3757 - 3763
  • [8] Epitaxial quantum dots: a semiconductor launchpad for photonic quantum technologies.[J].Zhou Xiaoyan;Zhai Liang;Liu Jin.None.2023,
  • [9] Applications of thin-film lithium niobate in nonlinear integrated photonics.[J].Vazimali Milad Gholipour;Fathpour Sasan.None.2022,
  • [10] Tailoring solid-state single-photon sources with stimulated emissions
    Wei, Yuming
    Liu, Shunfa
    Li, Xueshi
    Yu, Ying
    Su, Xiangbin
    Li, Shulun
    Shang, Xiangjun
    Liu, Hanqing
    Hao, Huiming
    Ni, Haiqiao
    Yu, Siyuan
    Niu, Zhichuan
    Iles-Smith, Jake
    Liu, Jin
    Wang, Xuehua
    [J]. NATURE NANOTECHNOLOGY, 2022, 17 (05) : 470 - +