Nitsche-XFEM for a time fractional diffusion interface problem

被引:0
作者
Tao Wang [1 ]
Yanping Chen [2 ]
机构
[1] China Nuclear Power Technology Research Institute Co.Ltd.
[2] School of Mathematical Sciences,South China Normal University
基金
中国博士后科学基金; 中国国家自然科学基金; 国家自然科学基金重点项目;
关键词
D O I
暂无
中图分类号
O241.82 [偏微分方程的数值解法];
学科分类号
070102 ;
摘要
In this paper, we propose a space-time finite element method for a time fractional diffusion interface problem. This method uses the low-order discontinuous Galerkin(DG) method and the Nitsche extended finite element method(Nitsche-XFEM) for temporal and spatial discretization, respectively. Sharp pointwise-in-time error estimates in graded temporal grids are derived, without any smoothness assumptions on the solution.Finally, three numerical examples are provided to verify the theoretical results.
引用
收藏
页码:665 / 682
页数:18
相关论文
共 50 条
  • [41] VARIATIONAL METHOD FOR A BACKWARD PROBLEM FOR A TIME-FRACTIONAL DIFFUSION EQUATION
    Wei, Ting
    Xian, Jun
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (04): : 1223 - 1244
  • [42] Total variation regularization for a backward time-fractional diffusion problem
    Wang, Liyan
    Liu, Jijun
    INVERSE PROBLEMS, 2013, 29 (11)
  • [43] INverse Source Problem for a Space-Time Fractional Diffusion Equation
    Muhammad Ali
    Sara Aziz
    Salman A. Malik
    Fractional Calculus and Applied Analysis, 2018, 21 : 844 - 863
  • [44] On existence and regularity of a terminal value problem for the time fractional diffusion equation
    Nguyen Huy Tuan
    Tran Bao Ngoc
    Zhou, Yong
    O'Regan, Donal
    INVERSE PROBLEMS, 2020, 36 (05)
  • [45] Regularized solution of an inverse source problem for a time fractional diffusion equation
    Huy Tuan Nguyen
    Dinh Long Le
    Van Thinh Nguyen
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (19-20) : 8244 - 8264
  • [46] An inverse problem for a nonlinear diffusion equation with time- fractional derivative
    Tatar, Salih
    Ulusoy, Suleyman
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2017, 25 (02): : 185 - 193
  • [47] An inverse source problem in a semilinear time-fractional diffusion equation
    Slodicka, M.
    Siskova, K.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (06) : 1655 - 1669
  • [48] A new regularization method for a Cauchy problem of the time fractional diffusion equation
    G. H. Zheng
    T. Wei
    Advances in Computational Mathematics, 2012, 36 : 377 - 398
  • [49] Simultaneous uniqueness for an inverse problem in a time-fractional diffusion equation
    Jing, Xiaohua
    Peng, Jigen
    Applied Mathematics Letters, 2020, 109
  • [50] A new regularization method for a Cauchy problem of the time fractional diffusion equation
    Zheng, G. H.
    Wei, T.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2012, 36 (02) : 377 - 398