Nitsche-XFEM for a time fractional diffusion interface problem

被引:0
作者
Tao Wang [1 ]
Yanping Chen [2 ]
机构
[1] China Nuclear Power Technology Research Institute Co.Ltd.
[2] School of Mathematical Sciences,South China Normal University
基金
中国博士后科学基金; 中国国家自然科学基金; 国家自然科学基金重点项目;
关键词
D O I
暂无
中图分类号
O241.82 [偏微分方程的数值解法];
学科分类号
070102 ;
摘要
In this paper, we propose a space-time finite element method for a time fractional diffusion interface problem. This method uses the low-order discontinuous Galerkin(DG) method and the Nitsche extended finite element method(Nitsche-XFEM) for temporal and spatial discretization, respectively. Sharp pointwise-in-time error estimates in graded temporal grids are derived, without any smoothness assumptions on the solution.Finally, three numerical examples are provided to verify the theoretical results.
引用
收藏
页码:665 / 682
页数:18
相关论文
共 50 条
  • [31] INVERSE COEFFICIENT PROBLEM FOR THE TIME-FRACTIONAL DIFFUSION EQUATION
    Durdiev, D. K.
    EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2021, 9 (01): : 44 - 54
  • [32] An iteration regularization for a time-fractional inverse diffusion problem
    Cheng, Hao
    Fu, Chu-Li
    APPLIED MATHEMATICAL MODELLING, 2012, 36 (11) : 5642 - 5649
  • [33] Numerical approximation of the space-time fractional diffusion problem
    Pellegrino, Enza
    Pitolli, Francesca
    Sorgentone, Chiara
    IFAC PAPERSONLINE, 2024, 58 (12): : 390 - 394
  • [34] Identification of a time-dependent source term for a time fractional diffusion problem
    Ruan, Zhousheng
    Wang, Zewen
    APPLICABLE ANALYSIS, 2017, 96 (10) : 1638 - 1655
  • [35] On the inverse problem of time dependent coefficient in a time fractional diffusion problem by sinc wavelet collocation method
    Bayrak, Mine Aylin
    Demir, Ali
    PHYSICA SCRIPTA, 2024, 99 (10)
  • [36] s THE NITSCHE XFEM-DG SPACE-TIME METHOD AND ITS IMPLEMENTATION IN THREE SPACE DIMENSIONS
    Lehrenfeld, Christoph
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (01) : A245 - A270
  • [37] Nitsche extended finite element method of a Ventcel transmission problem with discontinuities at the interface
    Capatina, Daniela
    Caubet, Fabien
    Dambrine, Marc
    Zelada, Rodrigo
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2025, 59 (02) : 999 - 1021
  • [38] Inverse Problem for Determination of An Unknown Coefficient in the Time Fractional Diffusion Equation
    Demir, Ali
    Bayrak, Mine Aylin
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2018, 9 (02): : 229 - 237
  • [39] Stable numerical solution to a Cauchy problem for a time fractional diffusion equation
    Wei, T.
    Zhang, Z. Q.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2014, 40 : 128 - 137
  • [40] A modified kernel method for a time-fractional inverse diffusion problem
    Songshu Liu
    Lixin Feng
    Advances in Difference Equations, 2015