Nitsche-XFEM for a time fractional diffusion interface problem

被引:0
|
作者
Tao Wang [1 ]
Yanping Chen [2 ]
机构
[1] China Nuclear Power Technology Research Institute Co.Ltd.
[2] School of Mathematical Sciences,South China Normal University
基金
国家自然科学基金重点项目; 中国博士后科学基金; 中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
O241.82 [偏微分方程的数值解法];
学科分类号
070102 ;
摘要
In this paper, we propose a space-time finite element method for a time fractional diffusion interface problem. This method uses the low-order discontinuous Galerkin(DG) method and the Nitsche extended finite element method(Nitsche-XFEM) for temporal and spatial discretization, respectively. Sharp pointwise-in-time error estimates in graded temporal grids are derived, without any smoothness assumptions on the solution.Finally, three numerical examples are provided to verify the theoretical results.
引用
收藏
页码:665 / 682
页数:18
相关论文
共 50 条
  • [21] An iteration regularization for a time-fractional inverse diffusion problem
    Cheng, Hao
    Fu, Chu-Li
    APPLIED MATHEMATICAL MODELLING, 2012, 36 (11) : 5642 - 5649
  • [22] Numerical approximation of the space-time fractional diffusion problem
    Pellegrino, Enza
    Pitolli, Francesca
    Sorgentone, Chiara
    IFAC PAPERSONLINE, 2024, 58 (12): : 390 - 394
  • [23] Long-time behavior of solutions for a fractional diffusion problem
    Ailing Qi
    Die Hu
    Mingqi Xiang
    Boundary Value Problems, 2021
  • [24] INVERSE COEFFICIENT PROBLEM FOR THE TIME-FRACTIONAL DIFFUSION EQUATION
    Durdiev, D. K.
    EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2021, 9 (01): : 44 - 54
  • [25] Spectral Optimization Methods for the Time Fractional Diffusion Inverse Problem
    Ye, Xingyang
    Xu, Chuanju
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2013, 6 (03) : 499 - 519
  • [26] Data regularization for a backward time-fractional diffusion problem
    Wang, Liyan
    Liu, Jijun
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (11) : 3613 - 3626
  • [27] AN INVERSE SOURCE PROBLEM FOR A GENERALIZED TIME FRACTIONAL DIFFUSION EQUATION
    Faizi, R.
    Atmania, R.
    EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2022, 10 (01): : 26 - 39
  • [28] Regularization of a terminal value problem for time fractional diffusion equation
    Nguyen Anh Triet
    Vo Van Au
    Le Dinh Long
    Baleanu, Dumitru
    Nguyen Huy Tuan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (06) : 3850 - 3878
  • [29] Long-time behavior of solutions for a fractional diffusion problem
    Qi, Ailing
    Hu, Die
    Xiang, Mingqi
    BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
  • [30] BACKWARD PROBLEM FOR A TIME-SPACE FRACTIONAL DIFFUSION EQUATION
    Jia, Junxiong
    Peng, Jigen
    Gao, Jinghuai
    Li, Yujiao
    INVERSE PROBLEMS AND IMAGING, 2018, 12 (03) : 773 - 799