Nitsche-XFEM for a time fractional diffusion interface problem

被引:0
|
作者
Tao Wang [1 ]
Yanping Chen [2 ]
机构
[1] China Nuclear Power Technology Research Institute Co.Ltd.
[2] School of Mathematical Sciences,South China Normal University
基金
国家自然科学基金重点项目; 中国博士后科学基金; 中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
O241.82 [偏微分方程的数值解法];
学科分类号
070102 ;
摘要
In this paper, we propose a space-time finite element method for a time fractional diffusion interface problem. This method uses the low-order discontinuous Galerkin(DG) method and the Nitsche extended finite element method(Nitsche-XFEM) for temporal and spatial discretization, respectively. Sharp pointwise-in-time error estimates in graded temporal grids are derived, without any smoothness assumptions on the solution.Finally, three numerical examples are provided to verify the theoretical results.
引用
收藏
页码:665 / 682
页数:18
相关论文
共 50 条
  • [1] Nitsche-XFEM for a time fractional diffusion interface problem
    Tao Wang
    Yanping Chen
    Science China Mathematics, 2024, 67 : 665 - 682
  • [2] Nitsche-XFEM for a time fractional diffusion interface problem
    Wang, Tao
    Chen, Yanping
    SCIENCE CHINA-MATHEMATICS, 2024, 67 (03) : 665 - 682
  • [3] Optimal preconditioners for Nitsche-XFEM discretizations of interface problems
    Christoph Lehrenfeld
    Arnold Reusken
    Numerische Mathematik, 2017, 135 : 313 - 332
  • [4] Optimal preconditioners for Nitsche-XFEM discretizations of interface problems
    Lehrenfeld, Christoph
    Reusken, Arnold
    NUMERISCHE MATHEMATIK, 2017, 135 (02) : 313 - 332
  • [5] NITSCHE-XFEM WITH STREAMLINE DIFFUSION STABILIZATION FOR A TWO-PHASE MASS TRANSPORT PROBLEM
    Lehrenfeld, Christoph
    Reusken, Arnold
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (05): : A2740 - A2759
  • [6] Nitsche-XFEM for the coupling of an incompressible fluid with immersed thin-walled structures
    Alauzet, Frederic
    Fabreges, Benoit
    Fernandez, Miguel A.
    Landajuela, Mikel
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 301 : 300 - 335
  • [7] Numerical approximation of an interface problem for fractional in time diffusion equation
    Delic, Aleksandra
    Jovanovic, Bogko S.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 229 : 467 - 479
  • [8] OPTIMAL QUADRATIC NITSCHE EXTENDED FINITE ELEMENT METHOD FOR INTERFACE PROBLEM OF DIFFUSION EQUATION
    Wang, Fei
    Zhang, Shuo
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2018, 36 (05) : 693 - 717
  • [9] A backward problem for the time-fractional diffusion equation
    Al-Jamal, Mohammad F.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (07) : 2466 - 2474
  • [10] A backward problem for the time-fractional diffusion equation
    Liu, J. J.
    Yamamoto, M.
    APPLICABLE ANALYSIS, 2010, 89 (11) : 1769 - 1788