Solvability of the product of n-integral equations in Orlicz spaces

被引:0
作者
Mohamed M. A. Metwali
Kinga Cichoń
机构
[1] Damanhour University,Department of Mathematics, Faculty of Sciences
[2] Poznan University of Technology,Institute of Mathematics, Faculty of Automatic Control, Robotics and Electrical Engineering
来源
Rendiconti del Circolo Matematico di Palermo Series 2 | 2024年 / 73卷
关键词
Orlicz spaces; Product of ; -integral equations; Measure of noncompactness; Darbo fixed point theorems; 46E30; 45G10; 47H30; 47N20;
D O I
暂无
中图分类号
学科分类号
摘要
We study the existence of a.e. monotonic Lφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_\varphi $$\end{document}-solutions for the product of n-quadratic integral equations. As indicated by the different continuity properties of the considered operators in Orlicz spaces, we study three different cases in which the generating N-functions satisfy the conditions Δ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta '$$\end{document}, Δ2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _2,$$\end{document} and Δ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _3$$\end{document}. The method adopted in this paper consists of an appropriate application of some measure of noncompactness and the Darbo fixed point theorem for solving operators acting on the product of n-Orlicz spaces.
引用
收藏
页码:171 / 187
页数:16
相关论文
共 62 条
  • [1] Abdalla AM(2020)On positive solutions of a system of equations generated by Hadamard fractional operators Adv. Differ. Equ. 20 337-378
  • [2] Salem HAH(2008)Constant-sign solutions of a system of Volterra integral equations in Orlicz spaces J. Integral Equ. Appl. 12 663-676
  • [3] Cichoń K(1993)Weakly singular Hammerstein–Volterra operators in Orlicz and Hölder spaces Z. Anal. Anwend. 26 44-54
  • [4] Agarwal RP(2019)Compression-expansion fixed point theorem of product type Commun. Appl. Nonlin. Anal. 15 277-287
  • [5] O’Regan D(1977)Strongly nonlinear equations of Hammerstein type J. Lond. Math. Soc. 49 395-406
  • [6] Wong P(2014)Integrable solutions of a nonlinear integral equation related to some epidemic models Glasnik Matematicki 264 107-121
  • [7] Appell J(2001)Integral operators on the product of J. Math. Anal. Appl. 2018 1-20
  • [8] Väth M(2018) spaces Electron. J. Differ. Equ. 6 103-117
  • [9] Avery RI(2012)Solvability of nonlinear integral equations of product type J. Biol. Dyn. 36 603-610
  • [10] Anderson DR(2003)On the formulation of epidemic models (an appraisal of Kermack and McKendrick) Demonstr. Math. 13 51-58