On cell modules of symmetric cellular algebras

被引:0
作者
Yanbo Li
Zhankui Xiao
机构
[1] Northeastern University at Qinhuangdao,Department of Information and Computing Sciences
[2] Huaqiao University,School of Mathematical Sciences
来源
Monatshefte für Mathematik | 2012年 / 168卷
关键词
Cell modules; Symmetric cellular algebras; Projective modules; 16D40; 16G30; 20C08;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be a symmetric cellular algebra with cell datum (Λ, M, C, i) and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Lambda_1=\{\lambda \in \Lambda_0 \mid W(\lambda) \, {\rm is \, simple}\}}$$\end{document}. We prove that Λ1 consists of two parts: one gives a lower bound for the cardinality of the set of cell modules with zero bilinear forms and the other parametrizes all the projective cell modules. Moreover, it is proved in Li (arxiv: math0911.3524, 2009) that the dual basis of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\{C_{S, T}^{\lambda} \mid \lambda \in \Lambda, S,T \in M(\lambda)\}}$$\end{document} is again cellular. In this paper, we will study the cell modules defined by dual basis. In particular, we study the dual basis of the Murphy basis.
引用
收藏
页码:49 / 64
页数:15
相关论文
共 22 条
  • [11] Mathas A.(1995)The representations of Hecke algebras of type J. Algebra 173 97-121
  • [12] König S.(2000)On the quasi-heredity of Birman–Wenzl algebras Adv. Math. 154 280-298
  • [13] Xi C.C.(2003)Cellular algebras and Cartan matrices Linear Algebra Appl. 365 369-388
  • [14] König S.(undefined)undefined undefined undefined undefined-undefined
  • [15] Xi C.C.(undefined)undefined undefined undefined undefined-undefined
  • [16] Li Y.B.(undefined)undefined undefined undefined undefined-undefined
  • [17] Malle G.(undefined)undefined undefined undefined undefined-undefined
  • [18] Mathas A.(undefined)undefined undefined undefined undefined-undefined
  • [19] Murphy E.(undefined)undefined undefined undefined undefined-undefined
  • [20] Xi C.C.(undefined)undefined undefined undefined undefined-undefined