On cell modules of symmetric cellular algebras

被引:0
作者
Yanbo Li
Zhankui Xiao
机构
[1] Northeastern University at Qinhuangdao,Department of Information and Computing Sciences
[2] Huaqiao University,School of Mathematical Sciences
来源
Monatshefte für Mathematik | 2012年 / 168卷
关键词
Cell modules; Symmetric cellular algebras; Projective modules; 16D40; 16G30; 20C08;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be a symmetric cellular algebra with cell datum (Λ, M, C, i) and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Lambda_1=\{\lambda \in \Lambda_0 \mid W(\lambda) \, {\rm is \, simple}\}}$$\end{document}. We prove that Λ1 consists of two parts: one gives a lower bound for the cardinality of the set of cell modules with zero bilinear forms and the other parametrizes all the projective cell modules. Moreover, it is proved in Li (arxiv: math0911.3524, 2009) that the dual basis of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\{C_{S, T}^{\lambda} \mid \lambda \in \Lambda, S,T \in M(\lambda)\}}$$\end{document} is again cellular. In this paper, we will study the cell modules defined by dual basis. In particular, we study the dual basis of the Murphy basis.
引用
收藏
页码:49 / 64
页数:15
相关论文
共 22 条
  • [1] Dipper R.(1986)Representations of Hecke algebras of general linear groups Proc. Lond. Math. Soc. 52 20-52
  • [2] James G.(1954)The hook graphs of the symmetric group Can. J. Math. 6 316-324
  • [3] Frame J.S.(2007)Hecke algebras of finite type are cellular Invent. math. 169 501-517
  • [4] Robinson G.B.(2009)Cellularity of cyclotomic Birman–Wenzl–Murakami algebras J. Algebra 321 3299-3320
  • [5] Thrall R.M.(1996)Cellular algebras Invent. Math. 123 1-34
  • [6] Geck M.(1997)A q-analogue of the Jantzen–Schaper theorem Proc. Lond. Math. Soc. 74 241-274
  • [7] Goodman F.(1999)Cellular algebras: inflations and Morita equivalences J. Lond. Math. Soc. 60 700-722
  • [8] Graham J.J.(2000)A self-injective cellular algebra is weakly symmetric J. Algebra 228 51-59
  • [9] Lehrer G.I.(2010)Centers of symmetric cellular algebras Bull. Aust. Math. Soc. 82 511-522
  • [10] James G.(1998)Symmetric cyclotomic Hecke algebras J. Algebra 205 275-293