Determination of thermodynamic interactions of poly(l-lactide) and biphasic calcium phosphate/poly(l-lactide) composite by inverse gas chromatography at infinite dilution

被引:0
作者
Aleksandra B. Nastasović
Nenad L. Ignjatović
Dragan P. Uskoković
Dana D. Marković
Bojana M. Ekmeščić
Danijela D. Maksin
Antonije E. Onjia
机构
[1] University of Belgrade,Centre for Fine Particles Processing and Nanotechnologies
[2] Institute for Chemistry,undefined
[3] Technology and Metallurgy,undefined
[4] Department of Chemistry,undefined
[5] Institute of Technical Sciences of the Serbian Academy of Sciences and Arts,undefined
[6] University of Belgrade,undefined
[7] Vinča Institute of Nuclear Sciences,undefined
[8] Department of Chemical Dynamics and Permanent Education,undefined
来源
Journal of Materials Science | 2014年 / 49卷
关键词
PLLA; Sorbate; Biphasic Calcium Phosphate; Molar Free Energy; Specific Retention Volume;
D O I
暂无
中图分类号
学科分类号
摘要
Inverse gas chromatography at infinite dilution was applied to determine the thermodynamic interactions of poly(l-lactide) (PLLA) and the composite of biphasic calcium phosphate and PLLA (BCP/PLLA). The specific retention volumes, Vg0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ V_{\text{g}}^{0} $$\end{document}, of 11 organic compounds of different chemical nature and polarity (non-polar, donor or acceptor) were determined in the temperature range of 308–378 K for PLLA and 308–398 K for BCP/PLLA. The weight fraction activity coefficients of test sorbates, Ω1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Omega_{1}^{\infty } $$\end{document}, and the Flory–Huggins interaction parameters, χ12∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \chi_{12}^{\infty } $$\end{document}, were estimated and discussed in terms of interactions of the sorbates with PLLA and BCP/PLLA. Also, the partial molar free energy, ΔG1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta G_{1}^{\infty } $$\end{document}, the partial molar heat of mixing, ΔH1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta H_{1}^{\infty } $$\end{document}, the sorption molar free energy, ΔG1S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta G_{1}^{\text{S}} $$\end{document}, the sorption enthalpy, ΔH1S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta H_{1}^{\text{S}} $$\end{document}, and the sorption entropy, ΔS1S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta S_{1}^{\text{S}} $$\end{document}, were analyzed. A different chromatographic behavior of the two investigated samples, PLLA and BCP/PLLA, was observed. The values of Ω1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Omega_{1}^{\infty } $$\end{document} indicated n-alkanes, diethyl ether, tetrahydrofurane (THF), cyclohexane, benzene, dioxane (except for 338 K), and ethyl acetate (EtAc) (except for 338 K) as non-solvents, and chloroform (CHCl3) as good solvent (except for 378 K) for PLLA. For BCP/PLLA, CHCl3, EtAc (for 378 K), dioxane (except for 378 K), and THF were indicated as good solvents.
引用
收藏
页码:5076 / 5086
页数:10
相关论文
共 166 条
[11]  
Živković LJ(2006)Repair of bone tissue affected by osteoporosis with hydroxyapatite/poly- J Mater Sci 41 5127-5133
[12]  
Uskoković D(2000)-lactide (HAp-PLLA) with and without blood plasma Biomaterials 21 2335-2346
[13]  
Nazhat SN(2007)Calcium orthophosphate-based biocomposites and hybrid biomaterials Acta Biomater 3 927-935
[14]  
Kellomäki M(1999)Nanosized hydroxyapatite and other calcium phosphates: chemistry of formation and application as drug and gene delivery agents Biomaterials 20 859-877
[15]  
Törmälä P(2012)Microspheres as building blocks for hydroxyapatite/polylactide biodegradable composites Acta Biomater 8 3997-4006
[16]  
Tanner KE(2011)Synthetic biodegradable polymers as orthopedic devices J Control Release 152 294-302
[17]  
Bonfield W(1993)Micro and nano/injectable composite biomaterials of calcium phosphate coated with poly( J Mater Sci Mater Med 4 58-65
[18]  
Roeder RK(1995)-lactide- Biomaterials 16 225-228
[19]  
Sproul MM(2004)-glycolide) J Biomed Mater Res Part B 71B 284-294
[20]  
Turner CH(2007)Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly- J Eur Ceram Soc 27 1589-1594