Determination of thermodynamic interactions of poly(l-lactide) and biphasic calcium phosphate/poly(l-lactide) composite by inverse gas chromatography at infinite dilution

被引:0
作者
Aleksandra B. Nastasović
Nenad L. Ignjatović
Dragan P. Uskoković
Dana D. Marković
Bojana M. Ekmeščić
Danijela D. Maksin
Antonije E. Onjia
机构
[1] University of Belgrade,Centre for Fine Particles Processing and Nanotechnologies
[2] Institute for Chemistry,undefined
[3] Technology and Metallurgy,undefined
[4] Department of Chemistry,undefined
[5] Institute of Technical Sciences of the Serbian Academy of Sciences and Arts,undefined
[6] University of Belgrade,undefined
[7] Vinča Institute of Nuclear Sciences,undefined
[8] Department of Chemical Dynamics and Permanent Education,undefined
来源
Journal of Materials Science | 2014年 / 49卷
关键词
PLLA; Sorbate; Biphasic Calcium Phosphate; Molar Free Energy; Specific Retention Volume;
D O I
暂无
中图分类号
学科分类号
摘要
Inverse gas chromatography at infinite dilution was applied to determine the thermodynamic interactions of poly(l-lactide) (PLLA) and the composite of biphasic calcium phosphate and PLLA (BCP/PLLA). The specific retention volumes, Vg0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ V_{\text{g}}^{0} $$\end{document}, of 11 organic compounds of different chemical nature and polarity (non-polar, donor or acceptor) were determined in the temperature range of 308–378 K for PLLA and 308–398 K for BCP/PLLA. The weight fraction activity coefficients of test sorbates, Ω1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Omega_{1}^{\infty } $$\end{document}, and the Flory–Huggins interaction parameters, χ12∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \chi_{12}^{\infty } $$\end{document}, were estimated and discussed in terms of interactions of the sorbates with PLLA and BCP/PLLA. Also, the partial molar free energy, ΔG1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta G_{1}^{\infty } $$\end{document}, the partial molar heat of mixing, ΔH1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta H_{1}^{\infty } $$\end{document}, the sorption molar free energy, ΔG1S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta G_{1}^{\text{S}} $$\end{document}, the sorption enthalpy, ΔH1S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta H_{1}^{\text{S}} $$\end{document}, and the sorption entropy, ΔS1S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta S_{1}^{\text{S}} $$\end{document}, were analyzed. A different chromatographic behavior of the two investigated samples, PLLA and BCP/PLLA, was observed. The values of Ω1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Omega_{1}^{\infty } $$\end{document} indicated n-alkanes, diethyl ether, tetrahydrofurane (THF), cyclohexane, benzene, dioxane (except for 338 K), and ethyl acetate (EtAc) (except for 338 K) as non-solvents, and chloroform (CHCl3) as good solvent (except for 378 K) for PLLA. For BCP/PLLA, CHCl3, EtAc (for 378 K), dioxane (except for 378 K), and THF were indicated as good solvents.
引用
收藏
页码:5076 / 5086
页数:10
相关论文
共 166 条
[1]  
Roeder RK(2008)Hydroxyapatite-reinforced polymer biocomposites for synthetic bone substitutes JOM 60 38-45
[2]  
Converse GL(2012)Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: a review Acta Biomater 8 1999-2016
[3]  
Kane RJ(1999)Microstructural characteristic of Ca-hydroxyapatite/poly- J Microsc 196 243-248
[4]  
Yue W(2001)-lactide based composites J Biomed Mater Res 58 335-343
[5]  
Zhou H(2003)Dynamic mechanical characterization of biodegradable composites of hydroxyapatite and polylactides J Biomed Mater Res A 67 801-812
[6]  
Lawrence JG(1999)Hydroxyapatite whiskers provide improved mechanical properties in reinforced polymer composites Biomaterials 20 809-816
[7]  
Bhaduri SB(2000)Synthesis and properties of hydroxyapatite/poly- Biomaterials 21 889-898
[8]  
Ignjatović N(2005)-lactide composite biomaterials J Biomater Appl 20 179-190
[9]  
Plavšić M(2009)Biodegradation behavior of ultra-high-strength hydroxyapatite/poly ( J Mater Sci 44 2343-2387
[10]  
Miljković M(2011)-lactide) composite rods for internal fixation of bone fractures J Biomed Mater Res Part B 96B 152-191