On the number of representations of integers by quaternary quadratic forms

被引:0
|
作者
Huixue Lao
Zhenxing Xie
Dan Wang
机构
[1] Shandong Normal University,School of Mathematics and Statistics
[2] Qilu University of Technology (Shandong Academy of Sciences),School of Mathematics and Statistics
来源
Indian Journal of Pure and Applied Mathematics | 2021年 / 52卷
关键词
Quaternary quadratic form; Asymptotic formula; Fourier coefficient; Cusp form; 11F30; 11F70;
D O I
暂无
中图分类号
学科分类号
摘要
Let R1(n),R2(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_1(n), R_2(n)$$\end{document} denote the numbers of representations of a positive integer n by the quaternary quadratic forms g1(x1,x2,x3,x4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_1(x_1,x_2,x_3,x_4)$$\end{document} = 2(x12+x1x2+x22)+2x1x3+x1x4+x2x3+2x2x4+2(x32+x3x4+x42),g2(x1,x2,x3,x4)=8(x12+x22)+x32+x42\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2( x_{1}^{2}+x_1 x_2+ x_{2}^{2})+2x_1x_3 +x_1x_4+ x_2x_3+2x_2x_4+2(x_{3}^{2}+x_3 x_4+x_{4}^{2}), g_2(x_{1},x_2,x_3,x_4)=8( x_{1}^{2}+x_{2}^{2})+x_{3}^{2}+x_{4}^{2}$$\end{document}, respectively, where x1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_1$$\end{document}, x2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_2$$\end{document}, x3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_3$$\end{document} and x4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_4$$\end{document} are integers. In this paper, we establish the asymptotic formulae for the sums ∑n≤xRi(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum \limits _{n\le x}R_i(n)$$\end{document} and ∑n≤xRi2(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum \limits _{n\le x}R_i^{2}(n)$$\end{document} for i=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1,2$$\end{document}.
引用
收藏
页码:395 / 406
页数:11
相关论文
共 50 条
  • [31] Representations of Bell-Type Quaternary Quadratic Forms
    Chang Heon Kim
    Kyoungmin Kim
    Soonhak Kwon
    Yeong-Wook Kwon
    Results in Mathematics, 2019, 74
  • [32] Representations of Bell-Type Quaternary Quadratic Forms
    Kim, Chang Heon
    Kim, Kyoungmin
    Kwon, Soonhak
    Kwon, Yeong-Wook
    RESULTS IN MATHEMATICS, 2019, 74 (02)
  • [33] The number of representations function for binary quadratic forms
    Hall, NA
    AMERICAN JOURNAL OF MATHEMATICS, 1940, 62 : 589 - 598
  • [34] QUADRATIC INTERTWINING FORMS ON RING OF INTEGERS IN NUMBER-FIELD
    LANNES, J
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1975, 8 (04): : 535 - 579
  • [35] Some exact formulae for the numbers of representations of integers by ternary quadratic forms
    Wang X.
    Zhao C.
    Results in Mathematics, 2004, 45 (3-4) : 370 - 388
  • [36] Representations of integers by certain 2k-ary quadratic forms
    Ye, Dongxi
    JOURNAL OF NUMBER THEORY, 2017, 179 : 50 - 64
  • [37] CLASS NUMBER FORMULAS FOR QUATERNARY QUADRATIC-FORMS
    PONOMAREV, P
    ACTA ARITHMETICA, 1981, 39 (01) : 95 - 104
  • [38] Theta function identities and representations by certain quaternary quadratic forms
    Alaca, Ayse
    Alaca, Saban
    Lemire, Mathieu F.
    Williams, Kenneth S.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (02) : 219 - 239
  • [39] Representations of finite number of quadratic forms with same rank
    Kim, Daejun
    Oh, Byeong-Kweon
    RAMANUJAN JOURNAL, 2021, 56 (02): : 631 - 644
  • [40] Ramanujan’s identities and representation of integers by certain binary and quaternary quadratic forms
    Alexander Berkovich
    Hamza Yesilyurt
    The Ramanujan Journal, 2009, 20 : 375 - 408