Prediction of problematic wine fermentations using artificial neural networks

被引:0
|
作者
R. César Román
O. Gonzalo Hernández
U. Alejandra Urtubia
机构
[1] Universidad de Valparaíso,Escuela de Ingeniería Industrial
[2] Universidad de Chile,Centro de Modelamiento Matemático
[3] Universidad Técnica Federico Santa María,Departamento de Ingeniería Química y Ambiental
[4] Centro Regional de Estudios de Alimentos Saludables,undefined
来源
Bioprocess and Biosystems Engineering | 2011年 / 34卷
关键词
Artificial neural networks; Pattern recognition; Fermentation; Wine;
D O I
暂无
中图分类号
学科分类号
摘要
Artificial neural networks (ANNs) have been used for the recognition of non-linear patterns, a characteristic of bioprocesses like wine production. In this work, ANNs were tested to predict problems of wine fermentation. A database of about 20,000 data from industrial fermentations of Cabernet Sauvignon and 33 variables was used. Two different ways of inputting data into the model were studied, by points and by fermentation. Additionally, different sub-cases were studied by varying the predictor variables (total sugar, alcohol, glycerol, density, organic acids and nitrogen compounds) and the time of fermentation (72, 96 and 256 h). The input of data by fermentations gave better results than the input of data by points. In fact, it was possible to predict 100% of normal and problematic fermentations using three predictor variables: sugars, density and alcohol at 72 h (3 days). Overall, ANNs were capable of obtaining 80% of prediction using only one predictor variable at 72 h; however, it is recommended to add more fermentations to confirm this promising result.
引用
收藏
页码:1057 / 1065
页数:8
相关论文
共 50 条
  • [1] Prediction of problematic wine fermentations using artificial neural networks
    Cesar Roman, R.
    Gonzalo Hernandez, O.
    Alejandra Urtubia, U.
    BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2011, 34 (09) : 1057 - 1065
  • [2] Prediction of Abnormal Wine Fermentations Using Computational Intelligent Techniques
    Hernandez, Gonzalo
    Leon, Roberto
    Urtubia, Alejandra
    JOURNAL OF COMPUTER SCIENCE & TECHNOLOGY, 2015, 15 (01): : 1 - 7
  • [3] NFL Prediction using Committees of Artificial Neural Networks
    David, John A.
    Pasteur, R. Drew
    Ahmad, M. Saif
    Janning, Michael C.
    JOURNAL OF QUANTITATIVE ANALYSIS IN SPORTS, 2011, 7 (02)
  • [4] Horse Racing Prediction Using Artificial Neural Networks
    Davoodi, Elnaz
    Khanteymoori, Ali Reza
    RECENT ADVANCES IN NEURAL NETWORKS, FUZZY SYSTEMS & EVOLUTIONARY COMPUTING, 2010, : 155 - 160
  • [5] Prediction of accident severity using artificial neural networks
    Moghaddam, F. Rezaie
    Afandizadeh, Sh.
    Ziyadi, M.
    INTERNATIONAL JOURNAL OF CIVIL ENGINEERING, 2011, 9 (01) : 41 - 48
  • [6] Prediction of Sediment Concentration Using Artificial Neural Networks
    Dogan, Emrah
    TEKNIK DERGI, 2009, 20 (01): : 4567 - 4582
  • [7] Prediction of Modal Shift Using Artificial Neural Networks
    Akgol, Kadir
    Aydin, Metin Mutlu
    Asilkan, Ozcan
    Gunay, Banihan
    TEM JOURNAL-TECHNOLOGY EDUCATION MANAGEMENT INFORMATICS, 2014, 3 (03): : 223 - 229
  • [8] Soil salinity prediction using artificial neural networks
    Patel, RM
    Prasher, SO
    Goel, PK
    Bassi, R
    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 2002, 38 (01): : 91 - 100
  • [9] Daily Discharge Prediction Using Artificial Neural Networks
    Zhao Weiguo
    Wang Liying
    APPLIED MECHANICS AND MECHANICAL ENGINEERING, PTS 1-3, 2010, 29-32 : 2799 - 2803
  • [10] STUDENT SUCCESS PREDICTION USING ARTIFICIAL NEURAL NETWORKS
    Ljubicic, Teo
    Hell, Marko
    EKONOMSKA MISAO I PRAKSA-ECONOMIC THOUGHT AND PRACTICE, 2023, 32 (02): : 361 - 374