Analysis of Uranium Sorption in a Laboratory Column Experiment Using a Reactive Transport and Surface Complexation Model

被引:0
作者
Yousef Baqer
Steven Thornton
Douglas I. Stewart
Simon Norris
XiaoHui Chen
机构
[1] University of Leeds,School of Civil Engineering
[2] The University of Sheffield,Groundwater Protection and Restoration Group, Department of Civil and Structural Engineering
[3] Nuclear Waste Services,undefined
来源
Transport in Porous Media | 2023年 / 149卷
关键词
PHREEQC; C-S-H; Alkaline; Advection–dispersion; Uranyl;
D O I
暂无
中图分类号
学科分类号
摘要
Sorption of uranyl (UO22+(UVI)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{UO}}_{2}^{2+} ({U}_{\mathrm{VI}})$$\end{document}) was found to strongly depend on the surface complexation model, with no significant removal of U_VI by precipitation or ion exchange process.The aluminol surface edges in kaolinite were shown to have a higher affinity for uranyl adsorption, while the hydrous ferric oxide edge on hematite adsorbed most of the uranyl ions.Uranium adsorption on the aluminol edge of kaolinite exceeds adsorption by the C-S-H phase. This result may reflect the lack of surface complexation parameters for C-S-H minerals.
引用
收藏
页码:423 / 452
页数:29
相关论文
共 14 条
  • [1] Analysis of Uranium Sorption in a Laboratory Column Experiment Using a Reactive Transport and Surface Complexation Model
    Baqer, Yousef
    Thornton, Steven
    Stewart, Douglas I.
    Norris, Simon
    Chen, XiaoHui
    TRANSPORT IN POROUS MEDIA, 2023, 149 (02) : 423 - 452
  • [2] Uranium(6+) Sorption on Montmorillonite: Experimental and Surface Complexation Modeling Study
    Pabalan, Roberto T.
    Turner, David R.
    AQUATIC GEOCHEMISTRY, 1996, 2 (03) : 203 - 226
  • [3] Uranium(6+) sorption on montmorillonite: Experimental and surface complexation modeling study
    Roberto T. Pabalan
    David R. Turner
    Aquatic Geochemistry, 1997, 2 : 203 - 226
  • [4] Surface complexation modeling of Uranium(VI) sorption on quartz in the presence and absence of alkaline earth metals
    Nair, Sreejesh
    Karimzadeh, Lotfollah
    Merkel, Broder J.
    ENVIRONMENTAL EARTH SCIENCES, 2014, 71 (04) : 1737 - 1745
  • [5] Sorption Testing and Generalized Composite Surface Complexation Models for Determining Uranium Sorption Parameters at a Proposed In-situ Recovery Site
    Johnson, Raymond H.
    Truax, Ryan A.
    Lankford, David A.
    Stone, James J.
    Mine Water and the Environment, 2016, 35 (04) : 435 - 446
  • [6] Laboratory column experiments and transport modeling to evaluate retardation of uranium in an aquifer downgradient of a uranium in-situ recovery site
    Dangelmayr, Martin A.
    Reimus, Paul W.
    Wasserman, Naomi L.
    Punsal, Jesse J.
    Johnson, Raymond H.
    Clay, James T.
    Stone, James J.
    APPLIED GEOCHEMISTRY, 2017, 80 : 1 - 13
  • [7] Reactive transport of uranium(VI) and phosphate in a goethite-coated sand column: An experimental study
    Cheng, Tao
    Barnett, Mark O.
    Roden, Eric E.
    Zhunag, Jinling
    CHEMOSPHERE, 2007, 68 (07) : 1218 - 1223
  • [8] Spectroscopic investigation of uranium sorption on soil surface using X-ray photoelectron spectroscopy
    Rout, Sabyasachi
    Ravi, P. M.
    Kumar, Ajay
    Tripathi, R. M.
    JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2017, 313 (03) : 565 - 570
  • [9] Reactive-transport modeling of fly ash-water-brines interactions from laboratory-scale column studies
    Mbugua, John M.
    Ngila, J. Catherine
    Kindness, Andrew
    Demlie, Molla
    PHYSICS AND CHEMISTRY OF THE EARTH, 2014, 67-69 : 132 - 139
  • [10] Reactive Transport Modelling of the contaminant release from Uranium Tailings using PhreeqC/Excel-coupling
    Sieland, Robert
    Metschies, Thomas
    Jahn, Silvia
    MINING MEETS WATER - CONFLICTS AND SOLUTIONS, 2016, : 1234 - 1241