A Survey on Regularity Conditions for State-Constrained Optimal Control Problems and the Non-degenerate Maximum Principle

被引:0
作者
Aram Arutyunov
Dmitry Karamzin
机构
[1] V.A. Trapeznikov Institute of Control Sciences of RAS,
[2] Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences,undefined
来源
Journal of Optimization Theory and Applications | 2020年 / 184卷
关键词
Optimal control; Maximum principle; State constraints; Regularity conditions; 49N25;
D O I
暂无
中图分类号
学科分类号
摘要
A survey on the theory of maximum principle for state-constrained optimal control problems is presented. The focus is on such issues as regularity and controllability conditions, non-degeneracy and normality of the maximum principle, and on the continuity of the measure multiplier.
引用
收藏
页码:697 / 723
页数:26
相关论文
共 116 条
[11]  
Russak IB(1985)The maximum principle in a problem with phase constraints Sov. J. Comput. Syst. Sci. 23 28-35
[12]  
Arutyunov AV(1985)On necessary optimality conditions in a problem with phase constraints Sov. Math. Dokl. 31 174-177
[13]  
Tynyanskiy NT(1985)Necessary conditions for strong minimum in optimal control problems with degeneration of endpoint and phase constraints Usp. Mat. Nauk 40 175-176
[14]  
Arutyunov AV(1987)On the necessary conditions for an extremum in an optimal control problem with phase constraints Differ. Uravn. 23 629-640
[15]  
Dubovitskii AY(1994)When is the maximum principle for state constrained problems nondegenerate? J. Math. Anal. Appl. 187 438-467
[16]  
Dubovitskii VA(1989)On the theory of the maximum principle for optimal control problems with state constraints Doklady AN SSSR 304 11-14
[17]  
Matveev AS(1991)Perturbations of extremal problems with constraints and necessary optimality conditions J. Sov. Math. 54 1342-1400
[18]  
Ferreira MMA(2011)The maximum principle for optimal control problems with state constraints by R.V. Gamkrelidze: revisited J. Optim. Theory Appl. 149 474-493
[19]  
Vinter RB(1968)Necessary conditions for a weak extremum in optimal control problems with mixed constraints of inequality type Zh. Vychisl. Mat. Mat. Fiz. 8 725-779
[20]  
Arutyunov AV(1989)Optimal multiprocesses SIAM J. Control Optim. 27 1072-1091