机构:University of Melbourne,ARC Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS), School of Mathematics and Statistics
Alexandr Garbali
Michael Wheeler
论文数: 0引用数: 0
h-index: 0
机构:University of Melbourne,ARC Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS), School of Mathematics and Statistics
Michael Wheeler
机构:
[1] University of Melbourne,ARC Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS), School of Mathematics and Statistics
来源:
Communications in Mathematical Physics
|
2020年
/
374卷
关键词:
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We derive combinatorial formulae for the modified Macdonald polynomial Hλ(x;q,t)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H_{\lambda }(x;q,t)$$\end{document} using coloured paths on a square lattice with quasi-cylindrical boundary conditions. The derivation is based on an integrable model associated to the quantum group of Uq(sln+1)^\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$U_{q}(\widehat{sl_{n+1})}$$\end{document}.