Traveling-wave solutions of a generalized damped wave equation with time-dependent coefficients through the trial equation method

被引:0
作者
Jorge E. Macías-Díaz
Héctor Vargas-Rodríguez
机构
[1] Universidad Autónoma de Aguascalientes,Departamento de Matemáticas y Física
[2] Universidad de Guadalajara,Departamento de Ciencias Exactas y Tecnología, Centro Universitario de los Lagos
来源
Journal of Mathematical Chemistry | 2018年 / 56卷
关键词
Generalized wave equation; Time-dependent coefficients; Traveling-wave solutions; Trial equation method;
D O I
暂无
中图分类号
学科分类号
摘要
In this note, we investigate the existence of exact solutions of a nonlinear partial differential equation with time-dependent coefficients that generalizes the well-known nonlinear wave model with damping. The model under consideration generalizes other classical models from physics, like the nonlinear Klein–Gordon equation, the (1+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1 + 1)$$\end{document}-dimensional ϕ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi ^4$$\end{document}-theory, the Fisher–Kolmogorov equation from population dynamics and the Hodgkin–Huxley model used in the description of the propagation of electric signals through the nervous system. An extension of the trial equation method (also known as the direct integral method) for partial differential equations with non-constant coefficients is used in this work in order to derive traveling-wave solutions in exact form.
引用
收藏
页码:1976 / 1984
页数:8
相关论文
共 25 条
  • [1] Bhatt HP(2016)A compact fourth-order l-stable scheme for reaction–diffusion systems with nonsmooth data J. Comput. Appl. Math. 299 176-193
  • [2] Khaliq A(2005)Exact travelling wave solutions for Chin. Phys. 14 1710-410
  • [3] Cheng-Shi L(2009)-dimensional dispersive long wave equation J. Comput. Appl. Math. 230 400-369
  • [4] Dehghan M(1937)Numerical solution of the nonlinear Klein–Gordon equation using radial basis functions Ann. Eugen. 7 355-234
  • [5] Shokri A(2002)The wave of advance of advantageous genes Phys. Rev. Lett. 89 134,102-2416
  • [6] Fisher RA(2017)Energy transmission in the forbidden band gap of a nonlinear chain J. Comput. Appl. Math. 313 218-3212
  • [7] Geniet F(2015)Valuing American floating strike lookback option and Neumann problem for inhomogeneous Black–Scholes equation Phys. Lett. A 379 2409-565
  • [8] Leon J(2005)An improved multi-value cellular automata model for heterogeneous bicycle traffic flow Phys. Rev. E 71 056,620-2689
  • [9] Jeon J(2009)Bistability in the sine-Gordon equation: The ideal switch Commun. Nonlinear Sci. Numer. Simul. 14 3200-561
  • [10] Han H(2010)An implicit four-step computational method in the study on the effects of damping in a modified J. Math. Chem. 48 558-undefined