Optomechanical resonator-enhanced atom interferometry

被引:0
作者
Logan L. Richardson
Ashwin Rajagopalan
Henning Albers
Christian Meiners
Dipankar Nath
Christian Schubert
Dorothee Tell
Étienne Wodey
Sven Abend
Matthias Gersemann
Wolfgang Ertmer
Ernst M. Rasel
Dennis Schlippert
Moritz Mehmet
Lee Kumanchik
Luis Colmenero
Ruven Spannagel
Claus Braxmaier
Felipe Guzmán
机构
[1] Institut für Quantenoptik,Leibniz Universität Hannover
[2] University of Arizona,College of Optical Sciences
[3] German Aerospace Center (DLR) – Institute for Satellite Geodesy and Inertial Sensing,Leibniz Universität Hannover
[4] Institut für Gravitationsphysik / Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),Department of Aerospace Engineering & Physics
[5] German Aerospace Center (DLR) – Institute of Space Systems,undefined
[6] University of Bremen – Center of Applied Space Technology and Microgravity (ZARM),undefined
[7] Texas A&M University,undefined
来源
Communications Physics | / 3卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Matter-wave interferometry and spectroscopy of optomechanical resonators offer complementary advantages. Interferometry with cold atoms is employed for accurate and long-term stable measurements, yet it is challenged by its dynamic range and cyclic acquisition. Spectroscopy of optomechanical resonators features continuous signals with large dynamic range, however it is generally subject to drifts. In this work, we combine the advantages of both devices. Measuring the motion of a mirror and matter waves interferometrically with respect to a joint reference allows us to operate an atomic gravimeter in a seismically noisy environment otherwise inhibiting readout of its phase. Our method is applicable to a variety of quantum sensors and shows large potential for improvements of both elements by quantum engineering.
引用
收藏
相关论文
共 116 条
[1]  
Fixler JB(2007)Atom interferometer measurement of the Newtonian constant of gravity Science 315 74-209
[2]  
Foster GT(2014)Precision measurement of the Newtonian gravitational constant using cold atoms Nature 510 518-195
[3]  
McGuirk JM(2017)Crossing over from attractive to repulsive interactions in a tunneling Bosonic Josephson junction Phys. Rev. Lett. 118 230403-184
[4]  
Kasevich MA(2004)Atomic interferometer with amplitude gratings of light and its applications to atom based tests of the equivalence principle Phys. Rev. Lett. 93 240404-144
[5]  
Rosi G(2013)Simultaneous dual-species matter-wave accelerometer Phys. Rev. A 88 043615-61
[6]  
Sorrentino F(2014)Quantum test of the universality of free fall Phys. Rev. Lett. 112 203002-L11
[7]  
Cacciapuoti L(2014)Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: search for spin-gravity coupling effects Phys. Rev. Lett. 113 023005-1148
[8]  
Prevedelli M(2015)Test of equivalence principle at 10 Phys. Rev. Lett. 115 013004-505
[9]  
Tino GM(2015) level by a dual-species double-diffraction Raman atom interferometer Nature 528 530-105
[10]  
Spagnolli G(2019)Quantum superposition at the half-metre scale Nature 570 205-155