Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document}-adic families of Jacobi forms

被引:0
作者
Matteo Longo
Marc-Hubert Nicole
机构
[1] Aix-Marseille Université (AMU),
[2] Università di Padova,undefined
关键词
Jacobi forms; Hida families; theta correspondence;
D O I
10.1007/s40993-020-00196-z
中图分类号
学科分类号
摘要
We show that Hida’s families of p-adic elliptic modular forms generalize to p-adic families of Jacobi forms. We also construct p-adic versions of theta lifts from elliptic modular forms to Jacobi forms. Our results extend to Jacobi forms previous works by Hida and Stevens on the related case of half-integral weight modular forms.
引用
收藏
相关论文
共 42 条
[1]  
Bertolini M(2009)The rationality of Stark–Heegner points over genus fields of real quadratic fieldseegner points over genus fields of real quadratic fields Ann. Math. 170 343-369
[2]  
Darmon H(2001)Integration on Ann. Math. 154 589-639
[3]  
Darmon H(2008) and arithmetic applications Compos. Math. 144 1155-1175
[4]  
Darmon H(1987)Stark–Heegner points and the shimura correspondence Math. Ann. 278 497-562
[5]  
Tornarìa G(1993)Heegner points and derivatives of Invent. Math. 111 407-447
[6]  
Gross B(1994)-series. II Int. Math. Res. Not. 1 31-39
[7]  
Kohnen W(1995)-adic Ann. Inst. Fourier (Grenoble) 45 605-624
[8]  
Zagier D(2000)-functions and J. Reine Angew. Math. 523 103-112
[9]  
Greenberg R(2000)-adic periods of modular forms Fundam. Prikl. Mat. 6 1007-1021
[10]  
Stevens G(1986)An approach to the Invent. Math. 85 545-613