Variability and bias in microbiome metagenomic sequencing: an interlaboratory study comparing experimental protocols

被引:22
作者
Forry, Samuel P. [1 ]
Servetas, Stephanie L. [1 ]
Kralj, Jason G. [1 ]
Soh, Keng [2 ]
Hadjithomas, Michalis [3 ]
Cano, Raul [4 ]
Carlin, Martha [4 ]
de Amorim, Maria G. [5 ]
Auch, Benjamin [6 ]
Bakker, Matthew G. [7 ]
Bartelli, Thais F. [5 ]
Bustamante, Juan P. [8 ,9 ,10 ]
Cassol, Ignacio [8 ]
Chalita, Mauricio [11 ]
Dias-Neto, Emmanuel [5 ]
Del Duca, Aaron [12 ]
Gohl, Daryl M. [6 ,13 ]
Kazantseva, Jekaterina [14 ]
Haruna, Muyideen T. [15 ]
Menzel, Peter [16 ]
Moda, Bruno S. [5 ,17 ]
Neuberger-Castillo, Lorieza [18 ]
Nunes, Diana N. [5 ]
Patel, Isha R. [19 ]
Peralta, Rodrigo D. [8 ,10 ]
Saliou, Adrien [20 ]
Schwarzer, Rolf [16 ]
Sevilla, Samantha [21 ,22 ]
Takenaka, Isabella K. T. M. [5 ]
Wang, Jeremy R. [23 ]
Knight, Rob [24 ,25 ,26 ,27 ]
Gevers, Dirk [28 ]
Jackson, Scott A. [1 ]
机构
[1] NIST, Complex Microbial Syst Grp, Gaithersburg, MD 20899 USA
[2] Novo Nordisk, Copenhagen, Denmark
[3] LifeMine Therapeut, Cambridge Discovery Pk,30 Acorn Pk Dr, Cambridge, MA 02140 USA
[4] BioCollect LLC, 5650 Washington St,Suite C9, Denver, CO 80216 USA
[5] Lab Med Genom, AC Camargo Canc Ctr, BR-01508010 Sao Paulo, SP, Brazil
[6] Univ Minnesota, Genom Ctr, Minneapolis, MN 55455 USA
[7] Univ Manitoba, Dept Microbiol, Winnipeg, MB R3T 2N2, Canada
[8] Univ Austral, Lab Invest Desarrollo Transferencia Fac Ingn, CIC Austral, Pilar, Argentina
[9] UNER, CONICET, Inst Invest & Desarrollo Bioingn Bioinformat IBB, Oro Verde, Argentina
[10] Univ Nacl Entre Rios, Fac Ingn, Concepcion Del Uruguay, Argentina
[11] CJ Biosci, Seoul, South Korea
[12] OMX Advisors Inc, Ottawa, ON, Canada
[13] Univ Minnesota, Dept Genet Cell Biol & Dev, Minneapolis, MN USA
[14] Ctr Food & Fermentat Technol TFTAK, Maealuse 2-4, EE-12618 Tallinn, Estonia
[15] Morgan State Univ, Bioenvironm Program, Baltimore, MD USA
[16] Lab Berlin Charite Vivantes GmbH, Sylter Str 2, D-13353 Berlin, Germany
[17] AC Camargo Canc Ctr, Lab Computat Biol & Bioinformat, BR-01508010 Sao Paulo, SP, Brazil
[18] Luxembourg Inst Hlth LIH, Integrated Biobank Luxembourg IBBL, Dudelange, Luxembourg
[19] US FDA, Ctr Food Safety & Appl Nutr, Off Appl Res & Safety Assessment, Laurel, MD 20708 USA
[20] Microbiol Res Inst, OMICS Hub, BIOASTER, Lyon, France
[21] NCI, NIH, Ctr Canc Res, CCR Collaborat Bioinformat Resource, Bethesda, MD 20892 USA
[22] Leidos Biomed Res Inc, Frederick Natl Lab Canc Res, Adv Biomed Computat Sci, Frederick, MD 21701 USA
[23] Univ N Carolina, Dept Genet, Chapel Hill, NC 27599 USA
[24] Univ Calif San Diego, Dept Pediat, 9500 Gilman Dr,MC 0763, La Jolla, CA 92093 USA
[25] Univ Calif San Diego, Dept Bioengn, 9500 Gilman Dr,MC 0763, La Jolla, CA 92093 USA
[26] Univ Calif San Diego, Dept Comp Sci & Engn, 9500 Gilman Dr,MC 0763, La Jolla, CA 92093 USA
[27] Univ Calif San Diego, Ctr Microbiome Innovat, 9500 Gilman Dr,MC 0763, La Jolla, CA 92093 USA
[28] Seed Hlth, 2100 Abbot Kinney Blvd, Venice, CA 90291 USA
关键词
D O I
10.1038/s41598-024-57981-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Several studies have documented the significant impact of methodological choices in microbiome analyses. The myriad of methodological options available complicate the replication of results and generally limit the comparability of findings between independent studies that use differing techniques and measurement pipelines. Here we describe the Mosaic Standards Challenge (MSC), an international interlaboratory study designed to assess the impact of methodological variables on the results. The MSC did not prescribe methods but rather asked participating labs to analyze 7 shared reference samples (5 x human stool samples and 2 x mock communities) using their standard laboratory methods. To capture the array of methodological variables, each participating lab completed a metadata reporting sheet that included 100 different questions regarding the details of their protocol. The goal of this study was to survey the methodological landscape for microbiome metagenomic sequencing (MGS) analyses and the impact of methodological decisions on metagenomic sequencing results. A total of 44 labs participated in the MSC by submitting results (16S or WGS) along with accompanying metadata; thirty 16S rRNA gene amplicon datasets and 14 WGS datasets were collected. The inclusion of two types of reference materials (human stool and mock communities) enabled analysis of both MGS measurement variability between different protocols using the biologically-relevant stool samples, and MGS bias with respect to ground truth values using the DNA mixtures. Owing to the compositional nature of MGS measurements, analyses were conducted on the ratio of Firmicutes: Bacteroidetes allowing us to directly apply common statistical methods. The resulting analysis demonstrated that protocol choices have significant effects, including both bias of the MGS measurement associated with a particular methodological choices, as well as effects on measurement robustness as observed through the spread of results between labs making similar methodological choices. In the analysis of the DNA mock communities, MGS measurement bias was observed even when there was general consensus among the participating laboratories. This study was the result of a collaborative effort that included academic, commercial, and government labs. In addition to highlighting the impact of different methodological decisions on MGS result comparability, this work also provides insights for consideration in future microbiome measurement study design.
引用
收藏
页数:14
相关论文
共 54 条
[1]   Developing standards for the microbiome field [J].
Amos, Gregory C. A. ;
Logan, Alastair ;
Anwar, Saba ;
Fritzsche, Martin ;
Mate, Ryan ;
Bleazard, Thomas ;
Rijpkema, Sjoerd .
MICROBIOME, 2020, 8 (01)
[2]   Metagenomic Analysis of the Airborne Environment in Urban Spaces [J].
Be, Nicholas A. ;
Thissen, James B. ;
Fofanov, Viacheslav Y. ;
Allen, Jonathan E. ;
Rojas, Mark ;
Golovko, George ;
Fofanov, Yuriy ;
Koshinsky, Heather ;
Jaing, Crystal J. .
MICROBIAL ECOLOGY, 2015, 69 (02) :346-355
[3]  
Berg G, 2020, MICROBIOME, V8, DOI 10.1186/s40168-020-00875-0
[4]   Next-generation sequencing technologies and their application to the study and control of bacterial infections [J].
Besser, J. ;
Carleton, H. A. ;
Gerner-Smidt, P. ;
Lindsey, R. L. ;
Trees, E. .
CLINICAL MICROBIOLOGY AND INFECTION, 2018, 24 (04) :335-341
[5]   Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease [J].
Blauwkamp, Timothy A. ;
Thair, Simone ;
Rosen, Michael J. ;
Blair, Lily ;
Lindner, Martin S. ;
Vilfan, Igor D. ;
Kawli, Trupti ;
Christians, Fred C. ;
Venkatasubrahmanyam, Shivkumar ;
Wall, Gregory D. ;
Cheung, Anita ;
Rogers, Zoe N. ;
Meshulam-Simon, Galit ;
Huijse, Liza ;
Balakrishnan, Sanjeev ;
Quinn, James, V ;
Hollemon, Desiree ;
Hong, David K. ;
Vaughn, Marla Lay ;
Kertesz, Mickey ;
Bercovici, Sivan ;
Wilber, Judith C. ;
Yang, Samuel .
NATURE MICROBIOLOGY, 2019, 4 (04) :663-674
[6]   Clinical metagenomics [J].
Chiu, Charles Y. ;
Miller, Steven A. .
NATURE REVIEWS GENETICS, 2019, 20 (06) :341-355
[7]   A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling [J].
D'Amore, Rosalinda ;
Ijaz, Umer Zeeshan ;
Schirmer, Melanie ;
Kenny, John G. ;
Gregory, Richard ;
Darby, Alistair C. ;
Shakya, Migun ;
Podar, Mircea ;
Quince, Christopher ;
Hall, Neil .
BMC GENOMICS, 2016, 17
[8]   Application of next generation sequencing in clinical microbiology and infection prevention [J].
Deurenberg, Ruud H. ;
Bathoorn, Erik ;
Chlebowicz, Monika A. ;
Couto, Natacha ;
Ferdous, Mithila ;
Garcia-Cobos, Silvia ;
Kooistra-Smid, Anna M. D. ;
Raangs, Erwin C. ;
Rosema, Sigrid ;
Veloo, Alida C. M. ;
Zhou, Kai ;
Friedrich, Alexander W. ;
Rossen, John W. A. .
JOURNAL OF BIOTECHNOLOGY, 2017, 243 :16-24
[9]  
DNANexus, 2018, YouTube
[10]   Microbial strain-level population structure and genetic diversity from metagenomes [J].
Duy Tin Truong ;
Tett, Adrian ;
Pasolli, Edoardo ;
Huttenhower, Curtis ;
Segata, Nicola .
GENOME RESEARCH, 2017, 27 (04) :626-638