The Kac Model Coupled to a Thermostat

被引:0
|
作者
Federico Bonetto
Michael Loss
Ranjini Vaidyanathan
机构
[1] Georgia Institute of Technology,School of Mathematics
来源
Journal of Statistical Physics | 2014年 / 156卷
关键词
Kac model; Thermostat; Approach to equilibrium; Propagation of chaos; 47A63; 15A90;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study a model of randomly colliding particles interacting with a thermal bath. Collisions between particles are modeled via the Kac master equation while the thermostat is seen as an infinite gas at thermal equilibrium at inverse temperature β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}. The system admits the canonical distribution at inverse temperature β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} as the unique equilibrium state. We prove that any initial distribution approaches the equilibrium distribution exponentially fast both by computing the gap of the generator of the evolution, in a proper function space, as well as by proving exponential decay in relative entropy. We also show that the evolution propagates chaos and that the one particle marginal, in the large system limit, satisfies an effective Boltzmann-type equation.
引用
收藏
页码:647 / 667
页数:20
相关论文
共 50 条
  • [1] The Kac Model Coupled to a Thermostat
    Bonetto, Federico
    Loss, Michael
    Vaidyanathan, Ranjini
    JOURNAL OF STATISTICAL PHYSICS, 2014, 156 (04) : 647 - 667
  • [2] Non-equilibrium Steady States in Kac’s Model Coupled to a Thermostat
    Josephine Evans
    Journal of Statistical Physics, 2016, 164 : 1103 - 1121
  • [3] Non-equilibrium Steady States in Kac's Model Coupled to a Thermostat
    Evans, Josephine
    JOURNAL OF STATISTICAL PHYSICS, 2016, 164 (05) : 1103 - 1121
  • [4] Stationary states for the Kac equation with a Gaussian thermostat
    Wennberg, B
    Wondmagegne, Y
    NONLINEARITY, 2004, 17 (02) : 633 - 648
  • [5] Stationary states for the noncutoff Kac equation with a Gaussian thermostat
    Bagland, Veronique
    Wennberg, Bernt
    Wondmagegne, Yosief
    NONLINEARITY, 2007, 20 (03) : 583 - 604
  • [6] Approach to a stationary state in a driven Hubbard model coupled to a thermostat
    Amaricci, A.
    Weber, C.
    Capone, M.
    Kotliar, G.
    PHYSICAL REVIEW B, 2012, 86 (08):
  • [7] A dynamic model for a thermostat
    Zou, X
    Jordan, JA
    Shillor, M
    JOURNAL OF ENGINEERING MATHEMATICS, 1999, 36 (04) : 291 - 310
  • [8] A dynamic model for a thermostat
    X. Zou
    J.A. Jordan
    M. Shillor
    Journal of Engineering Mathematics, 1999, 36 : 291 - 310
  • [9] A Kac model with exclusion
    Carlen, Eric
    Wennberg, Bernt
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (02): : 743 - 773
  • [10] A Kac Model for Fermions
    Matteo Colangeli
    Federica Pezzotti
    Mario Pulvirenti
    Archive for Rational Mechanics and Analysis, 2015, 216 : 359 - 413