Solution semicontinuity of parametric generalized vector equilibrium problems

被引:0
作者
C. R. Chen
S. J. Li
K. L. Teo
机构
[1] Chongqing University,College of Mathematics and Science
[2] Curtin University of Technology,Department of Mathematics and Statistics
来源
Journal of Global Optimization | 2009年 / 45卷
关键词
Lower semicontinuity; Continuity; Solution mappings; Parametric generalized vector equilibrium problems; Scalarization;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the lower semicontinuity and continuity of the solution mapping to a parametric generalized vector equilibrium problem involving set-valued mappings are established by using a new proof method which is different from the ones used in the literature.
引用
收藏
页码:309 / 318
页数:9
相关论文
共 26 条
[1]  
Anh L.Q.(2004)Semicontinuity of the solution set of parametric multivalued vector quasiequilibrium problems J. Math. Anal. Appl. 294 699-711
[2]  
Khanh P.Q.(2007)On the stability of the solution sets of general multivalued vector quasiequilibrium problems J. Optim. Theory Appl. 135 271-284
[3]  
Anh L.Q.(2007)Semicontinuity of the solution set map to a set-valued weak vector variational inequality J. Ind. Manag. Optim. 3 519-528
[4]  
Khanh P.Q.(2005)Global stability results for the weak vector variational inequality J. Global Optim. 32 543-550
[5]  
Chen C.R.(1989)A minimax theorem for vector-valued functions J. Optim. Theory Appl. 60 19-31
[6]  
Li S.J.(2008)Continuity of the solution set to parametric weak vector equilibrium problems J. Optim. Theory Appl. 139 35-46
[7]  
Cheng Y.H.(2008)Lower semicontinuity of the set of efficient solutions for generalized systems J. Optim. Theory Appl. 138 197-205
[8]  
Zhu D.L.(2006)Stability for parametric implicit vector equilibrium problems Math. Comput. Model. 43 1267-1274
[9]  
Ferro F.(2005)Upper semicontinuity of the solution set to parametric vector quasivariational inequalities J. Global Optim. 32 569-580
[10]  
Gong X.H.(2008)Sensitivity analysis of solution mappings of parametric vector quasi-equilibrium problems J. Global Optim. 41 187-202