The orthogonal momentum amplituhedron and ABJM amplitudes

被引:0
|
作者
Yu-tin Huang
Ryota Kojima
Congkao Wen
Shun-Qing Zhang
机构
[1] National Taiwan University,Department of Physics and Center for Theoretical Physics
[2] Physics Division,Centre for Theoretical Physics, Department of Physics and Astronomy
[3] National Center for Theoretical Sciences,undefined
[4] Queen Mary University of London,undefined
来源
Journal of High Energy Physics | / 2022卷
关键词
Scattering Amplitudes; Supersymmetric Gauge Theory;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce the momentum space amplituhedron for tree-level scattering amplitudes of ABJM theory. We demonstrate that the scattering amplitude can be identified as the canonical form on the space given by the product of positive orthogonal Grassmannian and the moment curve. The co-dimension one boundaries of this space are simply the odd-particle planar Mandelstam variables, while the even-particle counterparts are “hidden” as higher co-dimension boundaries. Remarkably, this space can be equally defined through a series of “sign flip” requirements of the projected external data, identical to “half” of four-dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 super Yang-Mills theory (sYM). Thus in a precise sense the geometry for ABJM lives on the boundary of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 sYM. We verify this relation through eight-points by showing that the BCFW triangulation of the amplitude tiles the amplituhedron. The canonical form is naturally derived using the Grassmannian formula for the amplitude in the N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 formalism for ABJM theory.
引用
收藏
相关论文
共 50 条
  • [31] Kleiss-Kuijf relations from momentum amplituhedron geometry
    Damgaard, David
    Ferro, Livia
    Lukowski, Tomasz
    Moerman, Robert
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (07)
  • [32] Kleiss-Kuijf relations from momentum amplituhedron geometry
    David Damgaard
    Livia Ferro
    Tomasz Łukowski
    Robert Moerman
    Journal of High Energy Physics, 2021
  • [33] ABJM amplitudes and WL at finite N
    Bianchi, Marco S.
    Leoni, Marta
    Leoni, Matias
    Mauri, Andrea
    Penati, Silvia
    Santambrogio, Alberto
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (09):
  • [34] A note on scattering amplitudes on the moduli space of ABJM
    Bianchi, Marco S.
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (06):
  • [35] A note on scattering amplitudes on the moduli space of ABJM
    Marco S. Bianchi
    Journal of High Energy Physics, 2015
  • [36] ABJM flux-tube and scattering amplitudes
    Basso, Benjamin
    Belitsky, Andrei V.
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (09)
  • [37] ABJM flux-tube and scattering amplitudes
    Benjamin Basso
    Andrei V. Belitsky
    Journal of High Energy Physics, 2019
  • [38] The two-loop MHV momentum amplituhedron from fibrations of fibrations
    Ferro, Livia
    Glew, Ross
    Lukowski, Tomasz
    Stalknecht, Jonah
    JOURNAL OF HIGH ENERGY PHYSICS, 2025, (02):
  • [39] ABJM amplitudes in U-gauge and a soft theorem
    Chin, Seungbeom
    Lee, Sangmin
    Yun, Youngbin
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (11): : 1 - 34
  • [40] ABJM amplitudes in U-gauge and a soft theorem
    Seungbeom Chin
    Sangmin Lee
    Youngbin Yun
    Journal of High Energy Physics, 2015