On the best L1-approximation of truncated powers by algebraic polynomials

被引:0
作者
Nitiema P.K. [1 ]
机构
[1] Dnepropetrovsk University, Dnepropetrovsk
关键词
Linear Method; Polynomial Approximation; Trigonometric Polynomial; Ukrainian Academy; Duality Relation;
D O I
10.1007/BF02487399
中图分类号
学科分类号
摘要
We determine the asymptotic behavior of the best L1-approximations of the kernels (x - a)+r-1, 1 < r < 2, and the classes W1r by algebraic polynomials. © 1999 Kluwer Academic/Plenum Publishers.
引用
收藏
页码:673 / 679
页数:6
相关论文
共 9 条
[1]  
Nikol'skii S.M., On the best polynomial approximation of functions {pipe}a-x{pipe} <sup>s</sup> in the mean, Izv. Akad. Nauk SSSR, Ser. Mat., 11, 3, pp. 139-180, (1947)
[2]  
Motornaya O.V., Improvement of one asymptotic result of Nikol'skii, Optimization of Approximation Methods, pp. 63-69, (1992)
[3]  
Motornaya O.V., On the Best Approximation of Differentible Functions by Algebraic Polynomials in the Space L, (1993)
[4]  
Motornaya O.V., On asymptotic estimates of the best approximations of differentiable functions by algebraic polynomials in the space L<sub>1</sub>, Ukr. Mat. Zh., 45, 6, pp. 859-862, (1993)
[5]  
Motornyi V.P., Nitiema P.K., On the best L-approximation by polynomials of the functions which are fractional integrals of summable functions, East J. Appr., 2, 4, pp. 409-425, (1996)
[6]  
Nikol'skii S.M., On the best linear method for polynomial approximation of differentiable functions in the mean, Dokl. Akad. Nauk SSSR, 58, 2, pp. 185-188, (1947)
[7]  
Taikov L.V., On approximation of some classes of periodic functions in the mean, Tr. Mat. Inst. Akad. Nauk SSSR, 88, pp. 61-70, (1967)
[8]  
Dzyadyk V.K., On the best approximation on classes of periodic functions defined by integrals of a linear combination of absolutely monotonic kernels, Mat. Zametki, 16, 5, pp. 691-701, (1974)
[9]  
Korneichuk N.P., Exact Constants in the Theory of Approximations, (1987)