An adaptive finite element method for singular parabolic equations

被引:0
作者
Olga Wilderotter
机构
[1] Universität Bonn,Sonderforschungsbereich 256
来源
Numerische Mathematik | 2003年 / 96卷
关键词
Porous Media; Finite Element Method; Error Estimate; Parabolic Equation; Extraction Process;
D O I
暂无
中图分类号
学科分类号
摘要
We study the adaptive finite element method to solve singular parabolic equations of porous media type and of nonstationary infiltration. We first prove a posteriori error estimates that especially take into account the discretization and algebraic errors. Furthermore we propose a robust adaptive method and apply this method to saturated/unsaturated porous media flow in an aquifer coupled with a root extraction process.
引用
收藏
页码:377 / 399
页数:22
相关论文
共 50 条
[31]   Cubic superconvergent finite volume element method for one-dimensional elliptic and parabolic equations [J].
Gao, Guanghua ;
Wang, Tongke .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (09) :2285-2301
[32]   Two-grid methods for nonlinear pseudo-parabolic integro-differential equations by finite element method [J].
Wang, Keyan .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 168 :174-189
[33]   A reduced-order Crank-Nicolson finite volume element formulation based on POD method for parabolic equations [J].
Luo, Zhendong ;
Li, Hong ;
Sun, Ping .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (11) :5887-5900
[34]   A NEW ERROR ESTIMATE FOR A FULLY FINITE ELEMENT DISCRETIZATION SCHEME FOR PARABOLIC EQUATIONS USING CRANK-NICOLSON METHOD [J].
Bradji, Abdallah ;
Fuhrmann, Juergen .
MATHEMATICA BOHEMICA, 2014, 139 (02) :113-124
[35]   Mesh-dependent stability for finite element approximations of parabolic equations with mass lumping [J].
Zhu, Liyong ;
Du, Qiang .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (05) :801-811
[36]   Finite Volume Element Method for a Nonlinear Parabolic Equation [J].
Du, Yanwei ;
Li, Yonghai .
ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2025, 17 (03) :681-705
[37]   Postprocessing the finite element method for semilinear parabolic problems [J].
Yan, Yubin .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (04) :1681-1702
[38]   An adaptive order finite element method for poroelastic materials described through the Biot equations [J].
Jonckheere, Stijn ;
Beriot, Hadrien ;
Dazel, Olivier ;
Desmet, Wim .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2022, 123 (05) :1329-1359
[39]   Strong convergence of the finite element method with truncated noise for semilinear parabolic stochastic equations with additive noise [J].
Mihály Kovács ;
Stig Larsson ;
Fredrik Lindgren .
Numerical Algorithms, 2010, 53 :309-320
[40]   Strong convergence of the finite element method with truncated noise for semilinear parabolic stochastic equations with additive noise [J].
Kovacs, Mihaly ;
Larsson, Stig ;
Lindgren, Fredrik .
NUMERICAL ALGORITHMS, 2010, 53 (2-3) :309-320