Galois coverings of moduli spaces of curves and loci of curves with symmetry

被引:0
作者
Marco Boggi
机构
[1] Universidad de los Andes,Departamento de Matemáticas
来源
Geometriae Dedicata | 2014年 / 168卷
关键词
Moduli space of curves; Galois coverings of moduli spaces; Smooth compactifications of Galois coverings; Teichmuller theory; Congruence subgroup problem for the Teichmuller group; 14H10; 14H15; 14H30; 32G15; 30F60;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\mathcal{M }}_{g,[n]}$$\end{document}, for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2g-2+n>0$$\end{document}, be the stack of genus \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document}, stable algebraic curves over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{C }$$\end{document}, endowed with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} unordered marked points. In Looijenga (J Algebraic Geom 3:283–293, 1994), Looijenga introduced the notion of Prym level structures in order to construct smooth projective Galois coverings of the stack \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\mathcal{M }}_{g}$$\end{document}. In Sect. 2 of this paper, we introduce the notion of Looijenga level structure which generalizes Looijenga construction and provides a tower of Galois coverings of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\mathcal{M }}_{g,[n]}$$\end{document} equivalent to the tower of all geometric level structures over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\mathcal{M }}_{g,[n]}$$\end{document}. In Sect. 3, Looijenga level structures are interpreted geometrically in terms of moduli of curves with symmetry. A byproduct of this characterization is a simple criterion for their smoothness. As a consequence of this criterion, it is shown that Looijenga level structures are smooth under mild hypotheses. The second part of the paper, from Sect. 4, deals with the problem of describing the D–M boundary of Looijenga level structures. In Sect. 6, a description is given of the nerve of the D–M boundary of abelian level structures. In Sect. 7, it is shown how this construction can be used to “approximate” the nerve of Looijenga level structures. These results are then applied to elaborate a new approach to the congruence subgroup problem for the Teichmüller modular group along the lines of Boggi (Math Nach 279(9–10):953–987, 2006).
引用
收藏
页码:113 / 142
页数:29
相关论文
共 14 条
[1]  
Armstrong MA(1965)On the fundamental group of an orbit space Proc. Camb. Philos. Soc. 61 639-646
[2]  
Asada M(2001)The faithfulness of the monodromy representations associated with certain families of algebraic curves J. Pure Appl. Algebra 159 123-147
[3]  
Boggi M(2006)Profinite Teichmüller theory Math. Nach. 279 953-987
[4]  
Boggi M(2009)Fundamental groups of moduli stacks of stable curves of compact type Geom. Topol. 13 247-276
[5]  
Boggi M(2000)Galois covers of moduli of curves Comp. Math. 120 171-191
[6]  
Pikaart M(1994)Smooth Deligne-Mumford compactifications by means of Prym level structures J. Algebraic Geom. 3 283-293
[7]  
Looijenga E(1997)Prym representations of mapping class groups Geom. Dedic. 64 69-83
[8]  
Looijenga E(1999)The local Pro- Invent. math. 138 319-423
[9]  
Mochizuki S(1999) anabelian geometry of curves J. Reine Angew. Math. 511 43-71
[10]  
Mochizuki S(2004)Extending families of curves over log regular schemes J. Inst. Math. Jussieu 3 69-103