On the regular Sylow p-subgroups of Chevalley groups over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{Z}_{p^m } $$ \end{document}

被引:0
作者
S. G. Kolesnikov
机构
[1] Krasnoyarsk State University,
关键词
regular ; -group; powerful ; -group; Sylow ; -subgroup;
D O I
10.1007/s11202-006-0114-6
中图分类号
学科分类号
摘要
We prove that a Sylow p-subgroup of the general linear group of dimension n over the residue ring modulo pm is regular for n2 < p and powerful if and only if n = 2 and m = 1. We obtain similar results for the Sylow p-subgroups of normal types over the same ring.
引用
收藏
页码:1054 / 1059
页数:5
相关论文
共 5 条
[1]  
Merzlyakov Yu. I.(1964)Central and derived series of matrix groups Algebra i Logika 3 49-59
[2]  
Yagzhev A. V.(1994)Regularity of Sylow subgroups of the full linear groups over residue rings Mat. Zametki 56 106-116
[3]  
Kolesnikov S. G.(2001)Regularity of Sylow Studies on Mathematical Analysis and Algebra 3 117-124
[4]  
Stein M. R.(1971)-subgroups of the groups Amer. J. Math. 93 965-1004
[5]  
Levchuk V. M.(1992)Generators, relations and covering of Chevalley groups over commutative rings Ukrain. Mat. Zh. 44 786-795