Numerical Simulation of Formation of Cellular Heterogeneous Detonation of Aluminum Particles in Oxygen

被引:0
作者
A. V. Fedorov
T. A. Khmel’
机构
[1] Russian Academy of Sciences,Institute of Theoretical and Applied Mechanics, Siberian Division
来源
Combustion, Explosion and Shock Waves | 2005年 / 41卷
关键词
gas suspensions; cellular detonation; numerical simulation;
D O I
暂无
中图分类号
学科分类号
摘要
Formation of cellular detonation in a stoichiometric mixture of aluminum particles in oxygen is studied by means of numerical simulation of shock-wave initiation of detonation in a flat and rather wide channel. By varying the channel width, the characteristic size of the cells of regular uniform structures for particle fractions of 1–10 µm is determined. The calculated cell size is in agreement with the estimates obtained by methods of an acoustic analysis. A relation is established between the cell size and the length of the characteristic zones of the detonation-wave structure (ignition delay, combustion, velocity and thermal relaxation).
引用
收藏
页码:435 / 448
页数:13
相关论文
共 50 条
  • [41] Numerical simulation of nano-aluminum ignition in oxygen and steam environments
    Zhang, Yan
    Yi, Jianhua
    Xie, Xiao
    Chen, Chao
    Li, Haijian
    Li, Wei
    Xu, Yi
    Sun, Zhihua
    Zhao, Fengqi
    [J]. FIREPHYSCHEM, 2024, 4 (02): : 114 - 121
  • [42] Numerical simulation of fracture induced by damage of intermetallic particles in wrought aluminum alloy
    Toda, H
    Kobayashi, T
    Takahashi, A
    Hoshiyama, A
    [J]. JOURNAL OF THE JAPAN INSTITUTE OF METALS, 2001, 65 (01) : 29 - 37
  • [43] Inert Particles Size Distribution Influence on Heterogeneous Detonation Suppression
    Kratova, Yu. V.
    Fedorov, A. V.
    [J]. INTERNATIONAL CONFERENCE ON THE METHODS OF AEROPHYSICAL RESEARCH (ICMAR 2016), 2016, 1770
  • [44] Numerical Simulation of Multidimensional Modes of Gaseous Detonation
    Levin, Vladimir A.
    Manuylovich, Ivan S.
    Markov, Vladimir V.
    [J]. COMBUSTION SCIENCE AND TECHNOLOGY, 2016, 188 (11-12) : 2236 - 2249
  • [45] Numerical Simulation on Shock-Induced Detonation
    Li J.-H.
    Shen Q.
    Cheng X.-L.
    [J]. Tuijin Jishu/Journal of Propulsion Technology, 2019, 40 (11): : 2521 - 2527
  • [46] Numerical simulation of large scale hydrogen detonation
    Heidari, A.
    Ferraris, S.
    Wen, J. X.
    Tam, V. H. Y.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (03) : 2538 - 2544
  • [47] Numerical simulation of spinning detonation in square tube
    Nobuyuki Tsuboi
    Makoto Asahara
    Keitaro Eto
    A. Koichi Hayashi
    [J]. Shock Waves, 2008, 18 : 329 - 344
  • [48] Numerical simulation study of sympathetic detonation in stages
    Yang, Tong-hui
    Wang, Cheng
    Li, Tao
    [J]. DEFENCE TECHNOLOGY, 2022, 18 (08) : 1382 - 1393
  • [49] Numerical simulation of spinning detonation in square tube
    Tsuboi, Nobuyuki
    Asahara, Makoto
    Eto, Keitaro
    Hayashi, A. Koichi
    [J]. SHOCK WAVES, 2008, 18 (04) : 329 - 344
  • [50] Cellular Aluminum Particle-Air Detonation Based on Realistic Heat Capacity Model
    Xiang GaoXiang
    Yang Pengfei
    Teng HongHui
    Jiang ZongLin
    [J]. COMBUSTION SCIENCE AND TECHNOLOGY, 2020, 192 (10) : 1931 - 1945