Inequalities for α-fractional differentiable functions

被引:0
作者
Yu-Ming Chu
Muhammad Adil Khan
Tahir Ali
Sever Silvestru Dragomir
机构
[1] Huzhou University,Department of Mathematics
[2] University of Peshawar,Department of Mathematics
[3] Victoria University,College of Engineering and Science
来源
Journal of Inequalities and Applications | / 2017卷
关键词
convex function; Hermite-Hadamard inequality; fractional derivative; fractional integral; special mean; trapezoidal formula; 26D15; 26A51; 26A33;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we present an identity and several Hermite-Hadamard type inequalities for conformable fractional integrals. As applications, we establish some inequalities for certain special means of two positive real numbers and give the error estimations for the trapezoidal formula.
引用
收藏
相关论文
共 73 条
  • [1] Hermite C(1883)Sur deux limites d’une intégrale définie Mathesis 3 82-215
  • [2] Hadamard J(1893)Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann J. Math. Pures Appl. 58 171-622
  • [3] Wang M-K(2017)Inequalities and infinite product formula for Ramanujan generalized modular equation function Ramanujan J. 37B 607-164
  • [4] Li Y-M(2017)Refinements of transformation inequalities for zero-balanced hypergeometric functions Acta Math. Sci. 86 153-48
  • [5] Chu Y-M(2017)Hermite-Hadamard inequality for fractional integrals via Acta Math. Univ. Comen. 48 35-4316
  • [6] Wang M-K(2016)-convex functions Punjab Univ. J. Math. 9 4305-402
  • [7] Chu Y-M(2016)Inequalities for three times differentiable functions J. Nonlinear Sci. Appl. 9 394-230
  • [8] Adil Khan M(2015)Generalizations of Hermite-Hadamard type inequalities for MT-convex functions Maejo Int. J. Sci. Technol. 28 221-7
  • [9] Khurshid Y(2014)Integral inequalities of Hermite-Hadamard type for the product of strongly logarithmically convex and other convex functions Filomat 27 1-731
  • [10] Ali T(2013)Hermite-Hadamard inequalities for relative semi-convex functions and applications Filomat 2013 725-1877