Positive solutions of BVPs for third-order discrete nonlinear difference systems

被引:4
作者
Zhang R. [1 ]
机构
[1] School of Mathematics, Physics and Software Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu
关键词
Cone; Discrete system; Fixed point; Multiplicity; Nonexistence; Positive solution;
D O I
10.1007/s12190-010-0378-7
中图分类号
学科分类号
摘要
This paper is concerned with the following system Δ 3u i(k)+fi (k,u1(k),u2(k),⋯, un(k))=0, k ψ [0,T], i=1,2, ⋯ ,n, with the Dirichlet boundary condition ui(0)=ui (1)=uii(T+3)=0, quad{}i=1,2,⋯,n. Some results are obtained for the existence, multiplicity and nonexistence of positive solutions to the above system by using nonlinear alternative of Leray-Schauder type, Krasnosel'skii's fixed point theorem in a cone and Leggett-Williams fixed point theorem. In particular, it proves that the above system has N positive solutions under suitable conditions, where N is an arbitrary integer. © 2010 Korean Society for Computational and Applied Mathematics.
引用
收藏
页码:551 / 575
页数:24
相关论文
共 22 条
[1]  
Agarwal R.P., Difference Equations and Inequalities, (2000)
[2]  
Agarwal R.P., Bohner M., Wong P.J.Y., Eigenvalues and eigenfunctions of discrete conjugate boundary value problems, Comput. Math. Appl., 38, pp. 159-183, (1999)
[3]  
Agarwal P.R., Henderson J., Positive solutions and nonlinear eigenvalue problems for third-order difference equations, Comput. Math. Appl., 36, pp. 347-355, (1998)
[4]  
Agarwal R.P., Wong F.H., Existence of positive solutions for higher order difference equations, Appl. Math. Lett., 10, pp. 67-74, (1997)
[5]  
Agarwal R.P., Wong F.H., Existence of positive solutions for non-positive higher order BVP's, J. Comput. Appl. Math., 88, pp. 3-14, (1998)
[6]  
Agarwal R.P., Wong P.J.Y., Advanced Topics in Difference Equations, (1998)
[7]  
Davis J.M., Eloe P.W., Henderson J., Triple positive solutions and dependence on high order derivatives, J. Math. Anal. Appl., 237, pp. 710-720, (1999)
[8]  
Eloe P.W., A generalization of concavity for finite differences, Comput. Math. Appl., 35, pp. 109-113, (1998)
[9]  
Eloe P.W., Raffoul Y., Reid D.T., Yin K.C., Positive solutions of nonlinear functional difference equations, Comput. Math. Appl., 42, pp. 639-646, (2001)
[10]  
Guo D., Lakshmikantham V., Nonlinear Problems in Abstract Cones, (1988)