High-precision nanoscale length measurement

被引:7
作者
Sheglov D.V. [1 ,2 ]
Kosolobov S.S. [1 ,2 ]
Fedina L.I. [1 ]
Rodyakina E.E. [1 ]
Gutakovskii A.K. [1 ]
Sitnikov S.V. [1 ]
Kozhukhov A.S. [1 ]
Zagarskikh S.A. [3 ]
Kopytov V.V. [3 ]
Evgrafov V.I. [3 ]
Shuvalov G.V. [3 ]
Matveichuk V.F. [3 ]
Latyshev A.V. [1 ,2 ]
机构
[1] Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, pr. Lavrentieva 13, Novosibirsk
[2] Novosibirsk State University, Pirogova st. 2, Novosibirsk
[3] Siberian Research Institute of Metrology, pr. Dimitrova 4, Novosibirsk
来源
Nanotechnologies in Russia | 2013年 / 8卷 / 7-8期
基金
俄罗斯基础研究基金会;
关键词
Atomic Force Microscope; Atomic Force Microscope Image; High Resolution Transmission Electron Microscopy; Silicon Surface; High Resolution Transmission Electron Microscopy Image;
D O I
10.1134/S1995078013040162
中图分类号
学科分类号
摘要
Modern lithographical methods used to create linear measures for nanometer-range dimensions and the main factors which limit the applications of such gages have been analyzed in the paper. Prospects for developing high-precision measures based on an atomically structured crystalline surface (containing monoatomic steps) whose parameters are bound to the crystallographic parameters of the crystal (traceable to the length measure) are shown. A method which can be used to create such measures based on controlling the surface morphology of monocrystalline silicon at an atomic level due to the effects of self-organization arising at the atomically clean surface as a result of annealing in ultrahigh vacuum is proposed. A description of the set of high-precision gages of vertical dimensions STEPP-IFP-1 in a size range of 0.31-31 nm with an error in the whole interval of gages of less than 0.05 nm is presented. The set of high-precision gages after carrying out state testing is included into the state registry of measuring means as measuring type no. 48115-11 (Federal Agency on Technical Regulating and Metrology order no. 6290 of October 31, 2011). © 2013 Pleiades Publishing, Ltd.
引用
收藏
页码:518 / 531
页数:13
相关论文
共 84 条
  • [1] Michelson, A.A., The relative motion of the Earth and the luminiferous ether (1881) Am. J. Sci., 22, pp. 120-129
  • [2] Linnik, V.P., A device for reflecting objects interference investigation by microscope ("Microinterferometr") (1933) Dokl. Akad. Nauk SSSR, (1), pp. 18-23
  • [3] (2002) Units of Measurements, , GOST (State Standard) no. 8. 417-2002
  • [4] Jennings, D.A., Pollock, C.R., Peterson, F.R., Drullinger, R.E., Evenson, K.M., Wells, J.S., Hall, J.L., Layer, H.P., Direct frequency measurement of the I2-stabilized He-Ne 473-THz (633 nm) laser (1983) Opt. Lett., 8, p. 3
  • [5] Quinn, T.J., Mise-en-pratique of the definition of the meter (1994) Metrologia, 30 (5), p. 523
  • [6] (1997) 9th Meeting, , Recommendation CCL1 (BIPM Com. Cons. Long.)
  • [7] Bukhtiyarov, A.M., Kvon, R.I., Nartova, A.V., Bukhtiyarov, V.I., An XPS and STM study of the size effect in NO adsorption on gold nanoparticles (2012) Russ. Chem. Bull., 60 (10), p. 1977
  • [8] Bukhtiyarov, A.V., Kosolobov, S.S., Nartova, A.V., Kvon, R.I., Nitrogen oxide absorption by modeling gold catalysts (2009) Vestn. Novosib. State Univ. Special Issue, 2, pp. 14-17
  • [9] Medvedeva, D.A., Maslov, M.A., Serikov, R.N., Morozova, N.G., Serebrenikova, G.A., Sheglov, D.V., Latyshev, A.V., Zenkova, M.A., Novel cholesterol-based cationic lipids for gene delivery (2009) J. Med. Chem., 52 (21), p. 6558
  • [10] Alfimov, M.V., Kadushnikov, R.M., Shturkin, N.A., Alievskii, V.M., Lebedev-Stepanov, P.V., Simulation modeling of nanoparticles self organization (2006) Ross. Nanotekhnol., 1 (1-2), pp. 127-133