Semi-empirical predictive equations for the initial amplitude of submarine landslide-generated waves: applications to 1994 Skagway and 1998 Papua New Guinea tsunamis

被引:0
作者
Ramtin Sabeti
Mohammad Heidarzadeh
机构
[1] Brunel University London,Department of Civil and Environmental Engineering
来源
Natural Hazards | 2020年 / 103卷
关键词
Landslide; Landslide-generated waves; Tsunami; Papua New Guinea;
D O I
暂无
中图分类号
学科分类号
摘要
Accurate predictions of maximum initial wave amplitude are essential for coastal impact assessment of tsunami waves generated by submarine landslides. Here, we analyse the existing predictive equations for the maximum initial amplitude (ηmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \eta_{\text{max} } $$\end{document}) of submarine landslide-generated waves and study their performance in reproducing real-world landslide incidents. Existing equations include various landslide parameters such as specific gravity (γs), initial submergence (d), slide length (B), width (w), thickness (T) and slope angle (θ). To determine how landslide parameters affect wave amplitude, we conduct a systematic sensitivity analysis. Results indicate that the slide volume (V = B × w × T) and d are among the most sensitive parameters. The data from the 1994 Skagway (observed ηmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \eta_{\text{max} } $$\end{document}: 1.0–2.0 m) and 1998 Papua New Guinea (PNG) (observed ηmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \eta_{\text{max} } $$\end{document}: 10–16 m) incidents provided valuable benchmarks for evaluating the performance of the existing equations. The predicted maximum initial amplitudes of 0.03–686.5 m and 3.7–6746.0 m were obtained for the 1994 and 1998 events, respectively, indicating a wide range for wave amplitudes. The predicted estimates for the smaller-sized event, i.e. the 1994 Skagway, appear to be more accurate than those made for the larger event, i.e. the 1998 PNG case. We develop a new predictive equation by fitting an equation to actual submarine landslide tsunamis: ηmax=50.67Vd0.34\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \eta_{ \text{max} } = 50.67 \left( {\frac{V}{d}} \right)^{0.34} $$\end{document}, where V is the slide volume (km3), d is initial submergence depth (m), and ηmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \eta_{\text{max} } $$\end{document} is in metres. Our new equation gives wave amplitudes of 1.6 m and 7.8 m for the 1994 and 1998 landslide tsunamis, respectively, which are fairly consistent with real observations.
引用
收藏
页码:1591 / 1611
页数:20
相关论文
共 133 条
[1]  
Assier-Rzadkieaicz S(2000)Numerical modelling of a landslide-generated tsunami: the 1979 Nice event Pure appl Geophys 157 1707-1727
[2]  
Heinrich P(1999)Anatomy of a landslide created tsunami at Skagway, Alaska Sci Tsunami Hazards 17 19-48
[3]  
Sabatier PC(2007)The 1979 Nice harbour catastrophe revisited: trigger mechanism inferred from geotechnical measurements and numerical modelling Mar Geol 245 40-64
[4]  
Savoye B(2015)Submarine landslide deposits of the historical lateral collapse of Ritter Island, Papua New Guinea Mar Petrol Geol 67 419-438
[5]  
Bourillet JF(2005)The Grand Banks landslide-generated tsunami of November 18, 1929: preliminary analysis and numerical modeling Mar Geol 215 45-57
[6]  
Campbell B(2017)Tsunamigenic potential of a newly discovered active fault zone in the outer Messina Strait, Southern Italy Geophys Res Lett 44 2427-2435
[7]  
Nottingham D(1980)Les glissements sous-marins de la pente continentale niçoise et la rupture de câbles en mer Ligure (Méditerranée occidentale) C R Acad Sci D 290 959-962
[8]  
Dan G(2005)Tsunami generation by submarine mass failure. I: modeling, experimental validation, and sensitivity analyses J Waterw Port Coast Ocean Eng 131 283-297
[9]  
Sultan N(2002)Development of a 3D numerical wave tank for modelling tsunami generation by underwater landslides Eng Anal Bound Elem 26 301-313
[10]  
Savoye B(1992)Model simulations of tsunamis generated by the Storegga slides Mar Geol 105 1-21