The correspondence between rotating black holes and fundamental strings
被引:0
|
作者:
Nejc Čeplak
论文数: 0引用数: 0
h-index: 0
机构:Institut de Physique Théorique,Université Paris Saclay, CNRS, CEA
Nejc Čeplak
Roberto Emparan
论文数: 0引用数: 0
h-index: 0
机构:Institut de Physique Théorique,Université Paris Saclay, CNRS, CEA
Roberto Emparan
Andrea Puhm
论文数: 0引用数: 0
h-index: 0
机构:Institut de Physique Théorique,Université Paris Saclay, CNRS, CEA
Andrea Puhm
Marija Tomašević
论文数: 0引用数: 0
h-index: 0
机构:Institut de Physique Théorique,Université Paris Saclay, CNRS, CEA
Marija Tomašević
机构:
[1] Institut de Physique Théorique,Université Paris Saclay, CNRS, CEA
[2] Trinity College,School of Mathematics and Hamilton Mathematics Institute
[3] Institució Catalana de Recerca i Estudis Avançats (ICREA),Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos
[4] Universitat de Barcelona,Institute for Theoretical Physics
[5] Centre de Physique Théorique (CPHT),undefined
[6] Ecole Polytechnique,undefined
[7] University of Amsterdam,undefined
来源:
Journal of High Energy Physics
|
/
2023卷
关键词:
Black Holes;
Black Holes in String Theory;
Bosonic Strings;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The correspondence principle between strings and black holes is a general framework for matching black holes and massive states of fundamental strings at a point where their physical properties (such as mass, entropy and temperature) smoothly agree with each other. This correspondence becomes puzzling when attempting to include rotation: At large enough spins, there exist degenerate string states that seemingly cannot be matched to any black hole. Conversely, there exist black holes with arbitrarily large spins that cannot correspond to any single-string state. We discuss in detail the properties of both types of objects and find that a correspondence that resolves the puzzles is possible by adding dynamical features and non-stationary configurations to the picture. Our scheme incorporates all black hole and string phases as part of the correspondence, save for one outlier which remains enigmatic: the near-extremal Kerr black hole. Along the way, we elaborate on general aspects of the correspondence that have not been emphasized before.