Double-direction quantum cyclic controlled remote state preparation of two-qubit states

被引:0
作者
Shiya Sun
Huisheng Zhang
机构
[1] Northwestern Polytechnical University,School of Electronics and Information
来源
Quantum Information Processing | 2021年 / 20卷
关键词
Double-direction; Cyclic controlled remote state preparation; Two-qubit state; Four-qubit projective measurement;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we propose a four-party double-direction quantum cyclic controlled remote state preparation scheme, where two-qubit states can be remotely prepared cyclically among three correspondents both in clockwise and counterclockwise directions simultaneously under the control of the supervisor. Before presenting our four-party scheme, we give the quantum circuit diagram for constructing the 25-qubit quantum entangled channel. In our scheme, each correspondent merely carries out a four-qubit projective measurement and the supervisor only need to perform a single-qubit measurement in the Z-basis. After obtaining the measurement results from the other two correspondents and the supervisor, each correspondent can restore the desired states perfectly by applying proper unitary operations. The proposed four-party scheme can also be extended to the case containing m(m>3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m(m>3)$$\end{document} correspondents, by using a (8m+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(8m+1)$$\end{document}-qubit entangled channel. Discussions show that the success probability of both the proposed four-party and (m+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m+1)$$\end{document}-party schemes can reach 1. We also analyze the control power of the supervisor in our scheme. Detailed analysis demonstrates that the control power of the supervisor can also be guaranteed.
引用
收藏
相关论文
共 225 条
[1]  
Horodecki R(2009)Quantum entanglement Rev. Mod. Phys. 81 865-942
[2]  
Horodecki P(1994)Teleportation of quantum states Phys. Rev. A 49 1473-1476
[3]  
Horodecki M(2004)Quantum dense coding with atomic qubits Phys. Rev. Lett. 93 040505-1243
[4]  
Horodecki K(1995)Quantum cryptography based on orthogonal states Phys. Rev. Lett. 75 1239-1899
[5]  
Vaidman L(2002)Deterministic secure direct communication using entanglement Phys. Rev. Lett. 89 187902-640
[6]  
Schaetz T(1993)Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels Phys. Rev. Lett. 70 1895-288
[7]  
Barrett MD(2000)Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity Phys. Rev. A 62 012313-1334
[8]  
Leibfried D(2001)Remote state preparation Phys. Rev. Lett. 87 077902-973
[9]  
Chiaverini J(2001)Minimum classical bit for remote preparation and measurement of a qubit Phys. Rev. A 63 014302-240
[10]  
Britton J(2003)Optimal remote state preparation Phys. Rev. Lett. 90 057901-1667