Global classical solutions to a kind of mixed initial-boundary value problem for inhomogeneous quasilinear hyperbolic systems

被引:0
作者
Yong-Fu Yang
机构
[1] Hohai University,Department of Mathematics, College of Sciences
来源
Applications of Mathematics | 2012年 / 57卷
关键词
quasilinear hyperbolic system; mixed initial-boundary value problem; global classical solution; weak linear degeneracy; matching conditon; 35L50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the mixed initial-boundary value problem for inhomogeneous quasilinear strictly hyperbolic systems with nonlinear boundary conditions in the first quadrant {(t, x): t ⩾ 0, x ⩽ 0} is investigated. Under the assumption that the right-hand side satisfies a matching condition and the system is strictly hyperbolic and weakly linearly degenerate, we obtain the global existence and uniqueness of a C1 solution and its L1 stability with certain small initial and boundary data.
引用
收藏
页码:231 / 261
页数:30
相关论文
共 30 条
[1]  
Bressan A.(1988)Contractive metrics for nonlinear hyperbolic systems Indiana Univ. Math. J. 37 409-420
[2]  
Bressan A.(1999) stability estimates for Arch. Ration. Mech. Anal. 149 1-22
[3]  
Liu T.-P.(2006) × J. Fudan Univ. Nat. Sci. 45 625-631
[4]  
Yang T.(1984) conservation laws J. Differ. Equations 52 66-75
[5]  
Chen Y. L.(1974)Global classical solution of the mixed initial-boundary value problem for a kind of the first order quasilinear hyperbolic system Commun. Pure Appl. Math. 27 377-405
[6]  
Greenberg J.M.(1994)The effect of boundary damping for the quasilinear wave equation J. Fudan Univ. Nat. Sci. 33 705-708
[7]  
Li T.-T.(2002)Formation of singularities in one-dimensional nonlinear wave propagation J. Partial Differ. Equations 15 46-68
[8]  
John F.(2003)Cauchy problem for first order quasilinear hyperbolic systems Nonlinear Anal., Theory Methods Appl. 52 573-583
[9]  
Kong D.X.(2003)Cauchy problem for general first order inhomogeneous quasilinear hyperbolic systems J. Partial Differ. Equations 16 8-17
[10]  
Li S.M.(2005)The mixed initial-boundary value problem for reducible quasilinear hyperbolic systems with linearly-degenerate characteristics Discrete Contin. Dyn. Syst. 12 59-78