Interaction of DNA with sperm-specific histones of the H1 family

被引:0
作者
Chikhirzhina E.V. [1 ]
Starkova T.Y. [2 ]
Kostyleva E.I. [1 ]
Chikhirzhina G.I. [3 ]
Vorobiev V.I. [1 ]
Polyanichko A.M. [1 ,2 ]
机构
[1] Institute of Cytology, Russian Academy of Sciences, St. Petersburg
[2] Department of Molecular Biophysics, Faculty of Physics, St. Petersburg State University, St. Petersburg
[3] Department of Biochemistry, Faculty of Biology, St. Petersburg State University, St. Petersburg
基金
俄罗斯基础研究基金会;
关键词
circular dichroism; DNA; DNA melting; DNA-protein interactions; sperm-specific histone H1;
D O I
10.1134/S1990519X11060058
中图分类号
学科分类号
摘要
Interactions of DNA with sperm-specific histones of the H1 family of sea urchin Strongylocentrotus intermedius, sea star Aphelasterias japonica, and bivalve mollusc Chlamis islandicus were studied using circular dichroism and the DNA melting analysis. Under physiological conditions, the highest DNA compacting ability was found in the echinoderm sperm H1 protein, in which additional α-helical domains are present in their C-terminal sequence. The derivative melting curves have two peaks: the low-temperature peak corresponds to the melting of free DNA, whereas the DNA regions bound to the protein melt at higher temperature. The highest stabilizing ability is characteristic of complexes with the mollusc sperm H1 protein. © 2011 Pleiades Publishing, Ltd.
引用
收藏
页码:536 / 542
页数:6
相关论文
共 31 条
[1]  
Allan J., Mitchell T., Harborne N., Bohm L., Crane-Robinson C., Roles of H1 Domains in Determining Higher Chromatin Structure and H1 Location, J. Mol. Biol., 187, pp. 591-601, (1986)
[2]  
Belokopytova I.A., Kostyleva E.I., Tomilin A.N., Vorobyev V.I., Human Male Infertility May Be Due to the Reduction of the Protamine P2 Content in Sperm Chromatin, Mol. Reprod. Develop., 34, pp. 53-57, (1993)
[3]  
Chikhirzhina E., Polyanichko A., Leonenko Z., Wieser H., Vorobyev V., C-terminal Domain of Nonhistone Protein HMGB1 as a Modulator of HMGB1-DNA Structural Interactions, Spectroscopy, 24, pp. 361-366, (2010)
[4]  
Chikhirzhina E.V., Vorob'ev V.I., Linker Histones: Conformational Changes and the Role in the Structural Organization of Chromatin, Tsitologiia, 44, 8, pp. 721-736, (2002)
[5]  
Chikhirzhina E.V., Kostyleva E.I., Ramm E.I., Vorob'ev V.I., Chromatin Compactification using a Model System of DNA-Protein Complexes, Tsitologiia, 40, 10, pp. 883-888, (1998)
[6]  
Chikhirzhina E.V., Polyanichko A.M., Skvortsov A.N., Kostyleva E.I., Houssier C., Vorob'ev V.J., HMG1 Domains: The Victims of Circumstance, Mol. Biol., 36, 3, pp. 525-531, (2002)
[7]  
Eirin-Lopez J.M., Ausio J., Origin and Evolution of Chromosomal Sperm Proteins, Bioessays, 31, pp. 1062-1070, (2009)
[8]  
Fasman G.D., Valenzuela M.S., Adler A.J., Complexes of Deoxyribonucleic Acid with Fragments of Lysine-Rich Histone (f-1): Circular Dichroism Studies, Biochemistry, 10, pp. 3795-3801, (1971)
[9]  
Hartree E.F., Determination of Protein: A Modification of the Lowry Method that Gives a Linear Photometric Response, Anal. Biochem., 48, pp. 422-427, (1972)
[10]  
Hill C.S., Martin S.R., Thomas J.O., A Stable β-Helical Element in the Carboxy-Terminal Domain of Free and Chromatin-bound Histone H1 from Sea Urchin Sperm, EMBO J., J8, pp. 2591-2599, (1989)