Selectiongain: an R package for optimizing multi-stage selection

被引:0
|
作者
Xuefei Mi
H. Friedrich Utz
Albrecht E. Melchinger
机构
[1] University of Hohenheim,Institute of Plant Breeding, Seed Science and Population Genetics
来源
Computational Statistics | 2016年 / 31卷
关键词
Selection gain; Multivariate normal integral; Optimal allocations;
D O I
暂无
中图分类号
学科分类号
摘要
Multi-stage selection is practised in numerous fields of the life sciences and particularly in breeding. A special characteristic of multi-stage selection is that candidates are evaluated in successive stages with increasing intensity and efforts, and only a fraction of the superior candidates is selected and promoted to the next stage. For the optimum design of such selection programs, the selection gain ΔG(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta G(y)$$\end{document} plays a central role. It can be calculated by integration of a truncated multivariate normal distribution. While mathematical formulas for calculating ΔG(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta G(y)$$\end{document} and ψ(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (y)$$\end{document}, the variance among the selected candidates, were developed a long time ago, solutions and software for numerical calculations were not available. We developed the R package selectiongain for efficient and precise calculation of ΔG(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta G(y)$$\end{document} and ψ(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (y)$$\end{document} for (i) a given matrix Σ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\varSigma }^{*}$$\end{document} of correlations among the unobservable target character and the selection criteria and (ii) given coordinates Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf Q $$\end{document} of the truncation point or the selected fractions α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }$$\end{document} in each stage. In addition, our software can be used for optimizing multi-stage selection programs under a given total budget and different costs of evaluating the candidates in each stage. Besides a detailed description of the functions of the software, the package is illustrated with two examples.
引用
收藏
页码:533 / 543
页数:10
相关论文
共 50 条
  • [41] Optimizing inventory decisions in a multi-stage supply chain under stochastic demands
    Seliaman, M. E.
    Ahmad, Ab Rahman
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 206 (02) : 538 - 542
  • [42] Intensification of flocculation efficiency in multi-stage reactors by optimizing the multi-cone segment configuration
    Liang, Xing
    Wu, Mian
    Yang, Xuzhou
    Mu, Yumin
    Cui, Can
    Li, Liang
    Zhang, Haijun
    Li, Xiaobing
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (06):
  • [43] Age of Information Diffusion on Social Networks: Optimizing Multi-Stage Seeding Strategies
    Li, Songhua
    Duan, Lingjie
    PROCEEDINGS OF THE 2023 INTERNATIONAL SYMPOSIUM ON THEORY, ALGORITHMIC FOUNDATIONS, AND PROTOCOL DESIGN FOR MOBILE NETWORKS AND MOBILE COMPUTING, MOBIHOC 2023, 2023, : 81 - 90
  • [44] Multi-stage classification
    Senator, TE
    FIFTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2005, : 386 - 393
  • [45] A technical note on "Optimizing inventory decisions in a multi-stage multi-customer supply chain"
    Leung, Kit Nam Francis
    TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW, 2009, 45 (04) : 572 - 582
  • [46] Optimizing a multi-stage production/inventory system by DC programming based approaches
    Hoai An Le Thi
    Duc Quynh Tran
    Computational Optimization and Applications, 2014, 57 : 441 - 468
  • [47] Multi-stage programming
    Taha, W
    Sheard, T
    ACM SIGPLAN NOTICES, 1997, 32 (08) : 321 - 321
  • [48] The multi-stage railgun
    Musolino, A
    Raugi, M
    Rocco, R
    Tellini, A
    IEEE TRANSACTIONS ON MAGNETICS, 2001, 37 (01) : 445 - 449
  • [49] Dynamic multi-stage resource selection with preference factors in grid economy
    Hua, Y
    Wu, CL
    GRID AND COOPERATIVE COMPUTING - GCC 2005, PROCEEDINGS, 2005, 3795 : 668 - 677
  • [50] Selection of a Multi-Stage System for Biosolids Management Applying Genetic Algorithm
    Stramer, Yitzhak
    Brenner, Asher
    Cohen, Stuart B.
    Oron, Gideon
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (14) : 5503 - 5508