Maximal steered coherence in the background of Schwarzschild space-time

被引:0
|
作者
Du, Ming-Ming [1 ,2 ]
Li, Hong-Wei [1 ,2 ]
Shen, Shu-Ting [1 ,2 ]
Yan, Xiao-Jing [3 ]
Li, Xi-Yun [3 ]
Zhou, Lan [3 ]
Zhong, Wei [4 ]
Sheng, Yu-Bo [1 ,2 ,4 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Elect & Opt Engn, Nanjing 210023, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Flexible Elect Future Technol, Nanjing 210023, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing 210023, Peoples R China
[4] Nanjing Univ Posts & Telecommun, Inst Quantum Informat & Technol, Nanjing 210003, Peoples R China
来源
EUROPEAN PHYSICAL JOURNAL C | 2024年 / 84卷 / 05期
关键词
ENTANGLEMENT;
D O I
10.1140/epjc/s10052-024-12830-6
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In the past two decades, the exploration of quantumness within Schwarzschild spacetime has garnered significant interest, particularly regarding the Hawking radiation's impact on quantum correlations and quantum coherence. Building on this foundation, we investigate how Hawking radiation influences maximal steered coherence (MSC)-a crucial measure for gauging the ability to generate coherence through steering. We find that as the Hawking temperature increases, the physically accessible MSC degrade while the unaccessible MSC increase. This observation is attributed to a redistribution of the initial quantum correlations, previously acknowledged by inertial observers, across all bipartite modes. In particular, we find that in limit case that the Hawking temperature tends to infinity, the accessible MSC equals to 1 / 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/\sqrt{2}$$\end{document} of its initial value, and the unaccessible MSC between mode A and B <overline> \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{B}$$\end{document} also equals to the same value. Our findings illuminate the intricate dynamics of quantum information in the vicinity of black holes, suggesting that Hawking radiation plays a pivotal role in reshaping the landscape of quantum coherence and entanglement in curved spacetime. This study not only advances our theoretical understanding of black hole thermodynamics but also opens new avenues for investigating the interface between quantum mechanics and general relativity.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] QUANTUM STRESS TENSOR IN SCHWARZSCHILD SPACE-TIME
    HOWARD, KW
    CANDELAS, P
    PHYSICAL REVIEW LETTERS, 1984, 53 (05) : 403 - 406
  • [22] TACHYONIC SCALAR WAVES IN SCHWARZSCHILD SPACE-TIME
    DHURANDHAR, SV
    JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (03) : 561 - 567
  • [23] Stored Energy in the Exterior Schwarzschild Space-Time
    Abdelgaber, M.
    Mourad, M. F.
    Fathy, H. M.
    CONTEMPORARY MATHEMATICS, 2025, 6 (01): : 703 - 714
  • [24] Tripartite measurement uncertainty in Schwarzschild space-time
    Dolatkhah, Hazhir
    Czerwinski, Artur
    Ali, Asad
    Al-Kuwari, Saif
    Haddadi, Saeed
    EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (11):
  • [25] Scalar field equation in Schwarzschild space-time
    Zecca, A
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2000, 115 (06): : 625 - 634
  • [26] The reaction to the schwarzschild space-time by the hawking evaporation
    Wuli Xuebao/Acta Physica Sinica, 47 (12): : 2077 - 2078
  • [27] Entropic uncertainty relations in Schwarzschild space-time
    Wang, Tian-Yu
    Wang, Dong
    PHYSICS LETTERS B, 2024, 855
  • [28] Analytical time-like geodesics in Schwarzschild space-time
    Kostic, Uros
    GENERAL RELATIVITY AND GRAVITATION, 2012, 44 (04) : 1057 - 1072
  • [29] Analytical time-like geodesics in Schwarzschild space-time
    Uroš Kostić
    General Relativity and Gravitation, 2012, 44 : 1057 - 1072
  • [30] Curved space, curved time, and curved space-time in Schwarzschild geodetic geometry
    Rafael T. Eufrasio
    Nicholas A. Mecholsky
    Lorenzo Resca
    General Relativity and Gravitation, 2018, 50