On Generalized Fractional Integration of Aleph (ℵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\aleph )$$\end{document}-Function

被引:0
作者
Alok Bhargava
Amber Srivastava
Rohit Mukherjee
机构
[1] Jaipur Engineering College and Research Centre,Department of Mathematics
[2] Swami Keshvanand Institute of Technology,Department of Mathematics
[3] Management and Gramothan,undefined
关键词
Aleph (; )-function; Srivastava’s polynomials; Saigo operators; Riemann–Liouville operators; Erd’elyi–Kober operators; 33C45; 33C60;
D O I
10.1007/s40819-017-0353-1
中图分类号
学科分类号
摘要
In the present paper, we establish two theorems exhibiting images of the product of Aleph (ℵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\aleph )$$\end{document}-function and Srivastava’s polynomials (J Math 14:1–6, 1972) in Saigo operators (Math Rep Kyushu Univ 11:135–143, 1978). Being of general and unified in nature, the results established here yield a large number of new and known images involving Riemann–Liouville and Erd’elyi–Kober fractional integral operators and several special functions as special cases. To illustrate, four corollaries have been recorded here.
引用
收藏
页码:233 / 241
页数:8
相关论文
共 50 条