Spanier–Whitehead Categories of Resolving Subcategories and Comparison with Singularity Categories

被引:0
作者
Abdolnaser Bahlekeh
Shokrollah Salarian
Ryo Takahashi
Zahra Toosi
机构
[1] Gonbad-Kavous University,Department of Mathematics
[2] University of Isfahan,Department of Mathematics
[3] Institute for Research in Fundamental Science (IPM),School of Mathematics
[4] Nagoya University,Graduate School of Mathematics
[5] University of Kansas,Department of Mathematics
来源
Algebras and Representation Theory | 2022年 / 25卷
关键词
Abelian category; Cohen–Macaulay ring; Derived category; Gorenstein ring; Quasi-resolving subcategory; Singularity category; 13C60; 13D09; 18E10; 18E30;
D O I
暂无
中图分类号
学科分类号
摘要
Let A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {A}$\end{document} be an abelian category with enough projective objects, and let X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {X}$\end{document} be a quasi-resolving subcategory of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {A}$\end{document}. In this paper, we investigate the affinity of the Spanier–Whitehead category SW(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf {SW}(\mathcal {X})$\end{document} of the stable category of X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {X}$\end{document} with the singularity category Dsg(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf {D}_{\mathsf {sg}}(\mathcal {A})$\end{document} of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {A}$\end{document}. We construct a fully faithful triangle functor from SW(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf {SW}(\mathcal {X})$\end{document} to Dsg(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf {D}_{\mathsf {sg}}(\mathcal {A})$\end{document}, and we prove that it is dense if and only if the bounded derived category Db(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf {D}^{\mathsf {b}}(\mathcal {A})$\end{document} of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {A}$\end{document} is generated by X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {X}$\end{document}. Applying this result to commutative rings, we obtain characterizations of the isolated singularities, the Gorenstein rings and the Cohen–Macaulay rings. Moreover, we classify the Spanier–Whitehead categories over complete intersections. Finally, we explore a method to compute the (Rouquier) dimension of the triangulated category SW(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf {SW}(\mathcal {X})$\end{document} in terms of generation in X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {X}$\end{document}.
引用
收藏
页码:595 / 613
页数:18
相关论文
共 26 条
  • [11] Jorgensen DA(2017)Singularity categories and singular equivalences for resolving subcategories Math Z. 1-2 251-248
  • [12] Dao H(2004)Triangulated categories of singularities and D-branes in Landau–Ginzburg models Proc. Steklov Inst. Math. 246 227-256
  • [13] Takahashi R(2008)Dimensions of triangulated categories J. K-Theory 1 193-272
  • [14] Dao H(2014)Subcategories of singularity categories via tensor actions Compos. Math. 150 229-248
  • [15] Takahashi R(2014)Reconstruction from Koszul homology and applications to module and derived categories Pacific J. Math. 268 231-undefined
  • [16] Dao H(undefined)undefined undefined undefined undefined-undefined
  • [17] Takahashi R(undefined)undefined undefined undefined undefined-undefined
  • [18] Heller A(undefined)undefined undefined undefined undefined-undefined
  • [19] Iyengar SB(undefined)undefined undefined undefined undefined-undefined
  • [20] Takahashi R(undefined)undefined undefined undefined undefined-undefined