Spanier–Whitehead Categories of Resolving Subcategories and Comparison with Singularity Categories

被引:0
作者
Abdolnaser Bahlekeh
Shokrollah Salarian
Ryo Takahashi
Zahra Toosi
机构
[1] Gonbad-Kavous University,Department of Mathematics
[2] University of Isfahan,Department of Mathematics
[3] Institute for Research in Fundamental Science (IPM),School of Mathematics
[4] Nagoya University,Graduate School of Mathematics
[5] University of Kansas,Department of Mathematics
来源
Algebras and Representation Theory | 2022年 / 25卷
关键词
Abelian category; Cohen–Macaulay ring; Derived category; Gorenstein ring; Quasi-resolving subcategory; Singularity category; 13C60; 13D09; 18E10; 18E30;
D O I
暂无
中图分类号
学科分类号
摘要
Let A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {A}$\end{document} be an abelian category with enough projective objects, and let X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {X}$\end{document} be a quasi-resolving subcategory of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {A}$\end{document}. In this paper, we investigate the affinity of the Spanier–Whitehead category SW(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf {SW}(\mathcal {X})$\end{document} of the stable category of X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {X}$\end{document} with the singularity category Dsg(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf {D}_{\mathsf {sg}}(\mathcal {A})$\end{document} of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {A}$\end{document}. We construct a fully faithful triangle functor from SW(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf {SW}(\mathcal {X})$\end{document} to Dsg(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf {D}_{\mathsf {sg}}(\mathcal {A})$\end{document}, and we prove that it is dense if and only if the bounded derived category Db(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf {D}^{\mathsf {b}}(\mathcal {A})$\end{document} of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {A}$\end{document} is generated by X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {X}$\end{document}. Applying this result to commutative rings, we obtain characterizations of the isolated singularities, the Gorenstein rings and the Cohen–Macaulay rings. Moreover, we classify the Spanier–Whitehead categories over complete intersections. Finally, we explore a method to compute the (Rouquier) dimension of the triangulated category SW(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf {SW}(\mathcal {X})$\end{document} in terms of generation in X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {X}$\end{document}.
引用
收藏
页码:595 / 613
页数:18
相关论文
共 26 条
  • [1] Avramov LL(2010)Reflexivity and rigidity for complexes, I, Commutative rings Algebra Number Theory 4 47-86
  • [2] Iyengar SB(1967)Grothendieck groups and Picard groups of Abelian group rings Ann. of Math. (2) 86 16-73
  • [3] Lipman J(2000)The homological theory of contravariantly finite subcategories: Auslander–Buchweitz contexts, Gorenstein categories and (co-)stabilization Comm. Algebra 28 4547-4596
  • [4] Bass H(1994)Left triangulated categories arising from contravariantly finite subcategories Comm. Algebra 22 5021-5036
  • [5] Murthy MP(2015)The Gorenstein defect category Q. J. Math. 66 459-471
  • [6] Beligiannis A(2014)The radius of a subcategory of modules Algebra Number Theory 8 141-172
  • [7] Beligiannis A(2015)The dimension of a subcategory of modules Forum. Math. Sigma 3 e19,31-301
  • [8] Marmaridis N(2015)Upper bounds for dimensions of singularity categories C. R. Math. Acad. Sci. Paris 353 297-63
  • [9] Bergh PA(1968)Stable homotopy categories Bull. Amer. Math. Soc. 74 28-535
  • [10] Oppermann S(2016)Annihilation of cohomology and strong generation of module categories Int. Math. Res. Not. IMRN 2 499-286