Algorithmic and complexity aspects of problems related to total Roman domination for graphs

被引:0
作者
Abolfazl Poureidi
Nader Jafari Rad
机构
[1] Shahrood University of Technology,Faculty of Mathematical Sciences
[2] Shahed University,Department of Mathematics
来源
Journal of Combinatorial Optimization | 2020年 / 39卷
关键词
Dominating set; Total dominating set; Total Roman dominating function; Algorithm; 3-SAT;
D O I
暂无
中图分类号
学科分类号
摘要
A function f:V(G)→{0,1,2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:V(G)\rightarrow \{0,1,2\}$$\end{document} is a Roman dominating function (RDF) if every vertex u for which f(u)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(u)=0$$\end{document} is adjacent to at least one vertex v for which f(v)=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(v)=2$$\end{document}. The weight of a Roman dominating function is the value f(V(G))=∑u∈Vf(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(V(G))=\sum _{u \in V}f(u)$$\end{document}. The Roman domination number of a graph G, denoted by γR(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{R}(G)$$\end{document}, is the minimum weight of a Roman dominating function on G. A connected (respectively, total) Roman dominating function is an RDF f such that the vertices with non-zero labels under f induce a connected graph (respectively, a subgraph with no isolated vertex). The connected (respectively, total) Roman domination number of a graph G, denoted by γcR(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{cR}(G)$$\end{document} (respectively, γtR(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{tR}(G)$$\end{document}) is the minimum weight of a connected (respectively, total) RDF of G. It this paper we first study the complexity issue of the problems posed in [H. Abdollahzadeh Ahangar, M. A. Henning, V. Samodivkin and I. G. Yero, Total Roman domination in graphs, Appl. Anal. Discret. Math. 10 (2016), 501–517], and show that the problem of deciding whether γtR(G)=2γ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{tR}(G)=2\gamma (G)$$\end{document}, γtR(G)=2γt(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{tR}(G)=2\gamma _t(G)$$\end{document} or γtR(G)=3γ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{tR}(G)=3\gamma (G)$$\end{document} is NP-hard even when restricted to chordal or bipartite graphs. Then, we give a linear algorithm that decides whether γtR(G)=2γ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{tR}(G)=2\gamma (G)$$\end{document}, γtR(G)=2γt(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{tR}(G)=2\gamma _t(G)$$\end{document} or γtR(G)=3γ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{tR}(G)=3\gamma (G)$$\end{document}, if G is a tree or a unicyclic graph.
引用
收藏
页码:747 / 763
页数:16
相关论文
共 43 条
  • [1] Abdollahzadeh Ahangar H(2016)Total Roman domination in graphs Appl Anal Discrete Math 10 501-517
  • [2] Henning MA(2016)On maximal Roman domination in graphs Int J Comput Math 93 1093-1102
  • [3] Samodivkin V(2018)Nordhaus–Gaddum bounds for total Roman domination J Comb Optim 35 126-133
  • [4] Yero IG(2019)On the total Roman domination in trees Discuss Math Graph Theory 39 519-532
  • [5] Abdollahzadeh Ahangar H(2017)Total Roman domination number of trees Australas J Combin 69 271-285
  • [6] Chellali M(2019)Total Roman domination in the lexicographic product of graphs Discrete Appl Math 263 88-95
  • [7] Kuziak D(2016)Roman Discrete Appl Math 204 22-28
  • [8] Samodivkin V(2004)-domination Discrete Math 278 11-22
  • [9] Amjadi J(1975)On Roman domination in graphs Inf Process Lett 4 41-44
  • [10] Sheikholeslami SM(1984)A linear algorithm for the domination number of a tree SIAM J. Algebr Discrete Methods 5 420-425