Calculation of fractional derivatives of noisy data with genetic algorithms

被引:0
作者
J. A. Tenreiro Machado
机构
[1] Institute of Engineering of Porto,Department of Electrical Engineering
来源
Nonlinear Dynamics | 2009年 / 57卷
关键词
Fractional derivatives; Fractional calculus; Genetic algorithms; Numerical differentiation;
D O I
暂无
中图分类号
学科分类号
摘要
This paper addresses the calculation of derivatives of fractional order for non-smooth data. The noise is avoided by adopting an optimization formulation using genetic algorithms (GA). Given the flexibility of the evolutionary schemes, a hierarchical GA composed by a series of two GAs, each one with a distinct fitness function, is established.
引用
收藏
页码:253 / 260
页数:7
相关论文
共 27 条
  • [1] Ross B.(1977)Fractional calculus Math. Mag. 50 15-122
  • [2] Bagley R.L.(1983)Fractional calculus—a different approach to the analysis of viscoelastically damped structures AIAA J. 21 741-748
  • [3] Torvik P.J.(1996)Fractional relaxation-oscillation and fractional diffusion-wave phenomena Chaos Solitons Fractals 7 1461-1477
  • [4] Mainardi F.(1997)Analysis and design of fractional-order digital control systems J. Syst. Anal. Model. Simul. 27 107-122
  • [5] Machado J.T.(2001)Discrete-time fractional-order controllers J. Fract. Calc. Appl. Anal. 4 47-66
  • [6] Machado J.T.(1992)A fractional integral and its physical interpretation Theor. Math. Phys. 90 242-251
  • [7] Nigmatullin R.R.(1994)On the paper by R.R. Nigmatullin “A fractional integral and its physical interpretation” Theor. Math. Phys. 100 1154-1156
  • [8] Rutman R.S.(1995)The relationship between fractional calculus and fractals Fractals 3 217-229
  • [9] Tatom F.B.(1997)Fractional integral associated to generalized cookie-cutter set and its physical interpretation J. Phys. A: Math. Gen. 30 5569-5577
  • [10] Yu Z.(1997)Geometric interpretation of the fractional derivative J. Fract. Calc. 11 21-52