Families of Spectral Sets for Bernoulli Convolutions

被引:0
|
作者
Palle E. T. Jorgensen
Keri A. Kornelson
Karen L. Shuman
机构
[1] University of Iowa,Department of Mathematics
[2] University of Oklahoma,Department of Mathematics
[3] Grinnell College,Department of Mathematics & Statistics
来源
Journal of Fourier Analysis and Applications | 2011年 / 17卷
关键词
Bernoulli convolution; Spectral measure; Hilbert space; Fractals; Fourier series; Fourier coefficients; Orthogonal series; Iterated function system; 28A80; 42A16; 42C25; 46E30; 42B05; 28D05;
D O I
暂无
中图分类号
学科分类号
摘要
We study the harmonic analysis of Bernoulli measures μλ, a one-parameter family of compactly supported Borel probability measures on the real line. The parameter λ is a fixed number in the open interval (0,1). The measures μλ may be understood in any one of the following three equivalent ways: as infinite convolution measures of a two-point probability distribution; as the distribution of a random power series; or as an iterated function system (IFS) equilibrium measure determined by the two transformations λ(x±1). For a given λ, we consider the harmonic analysis in the sense of Fourier series in the Hilbert space L2(μλ). For L2(μλ) to have infinite families of orthogonal complex exponential functions e2πis(⋅), it is known that λ must be a rational number of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{m}{2n}$\end{document}, where m is odd. We show that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{2}(\mu_{\frac{1}{2n}})$\end{document} has a variety of Fourier bases; i.e. orthonormal bases of exponential functions. For some other rational values of λ, we exhibit maximal Fourier families that are not orthonormal bases.
引用
收藏
页码:431 / 456
页数:25
相关论文
共 50 条
  • [31] THE FRACTAL PROPERTIES OF SOME BERNOULLI CONVOLUTIONS
    Goncharenko, Y. V.
    Pratsyovytyi, M. V.
    Torbin, G. M.
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2008, 79 : 34 - 49
  • [32] Spectrality of Moran-Type Bernoulli Convolutions
    Deng, Qi-Rong
    Li, Ming-Tian
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (04)
  • [33] Spectra of Bernoulli convolutions as multipliers in LP on the circle
    Sidorov, N
    Solomyak, B
    DUKE MATHEMATICAL JOURNAL, 2003, 120 (02) : 353 - 370
  • [34] ON INHOMOGENEOUS BERNOULLI CONVOLUTIONS AND RANDOM POWER SERIES
    Bisbas, Antonios
    Neunhaeuserer, Jorg
    REAL ANALYSIS EXCHANGE, 2010, 36 (01) : 213 - 222
  • [35] Finite orbits in multivalued maps and Bernoulli convolutions
    Bandt, Christoph
    ADVANCES IN MATHEMATICS, 2018, 324 : 437 - 485
  • [36] ABSOLUTE CONTINUITY OF BERNOULLI CONVOLUTIONS FOR ALGEBRAIC PARAMETERS
    Varju, Peter P.
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 32 (02) : 351 - 397
  • [37] ABSOLUTE CONTINUITY OF BERNOULLI CONVOLUTIONS, A SIMPLE PROOF
    Peres, Yuval
    Solomyak, Boris
    MATHEMATICAL RESEARCH LETTERS, 1996, 3 (02) : 231 - 239
  • [38] Almost sure absolute continuity of Bernoulli convolutions
    Bjorklund, Michael
    Schnellmann, Daniel
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2010, 46 (03): : 888 - 893
  • [39] On the Exceptional Set for Absolute Continuity of Bernoulli Convolutions
    Shmerkin, Pablo
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2014, 24 (03) : 946 - 958
  • [40] Counting -expansions and the absolute continuity of Bernoulli convolutions
    Kempton, Tom
    MONATSHEFTE FUR MATHEMATIK, 2013, 171 (02): : 189 - 203