On the multi-component diffusion in the linear region of the extended thermodynamics framework

被引:0
|
作者
Devyani Thapliyal
Raj Kumar Arya
George D. Verros
机构
[1] Dr. B. R. Ambedkar National Institute of Technology,Department of Chemical Engineering
[2] Aristotle University of Thessaloniki,Department of Chemistry
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this work, the application of axioms such as Onsager reciprocal relations (ORR) and the quasi-equilibrium axiom for multi-component diffusion in the linear region of extended thermodynamics is investigated. It is shown that the quasi-equilibrium axiom is a direct consequence of the Galilean invariance and the ORR are compatible with this principle. This allows the formulation of diffusion models such as the Onsager–Fuoss formalism and the Maxwell–Stefan model for the multi-component diffusion in the linear region of extended thermodynamics. Moreover, criteria for the detection of extrema in the entropy production rate for multi-component diffusion are proposed. It is believed that this work could be applied in processes such as the drying of glassy coatings.
引用
收藏
相关论文
共 50 条
  • [21] Multi-Component Diffusion in the Vicinity of a Growing Crystal
    Helfenritter, Christoph
    Kind, Matthias
    CRYSTALS, 2022, 12 (06)
  • [22] On the validity of the geometric rule in multi-component diffusion
    Verros, George D.
    COMPUTATION IN MODERN SCIENCE AND ENGINEERING VOL 2, PTS A AND B, 2007, 2 : 440 - 443
  • [23] REPLY TO COMMENTS BY YAO ON MULTI-COMPONENT DIFFUSION
    ZIEBOLD, TO
    COOPER, AR
    ACTA METALLURGICA, 1967, 15 (02): : 423 - &
  • [24] Relativistic Theory of Irreversible Thermodynamics for Multi-Component Fluids and Its Post-Newtonian Limit in Relation to Classical Extended Thermodynamics
    Chrobok, Thoralf
    von Borzeszkowski, Horst-Heino
    JOURNAL OF NON-EQUILIBRIUM THERMODYNAMICS, 2020, 45 (02) : 133 - 153
  • [25] The Kirkendall Effect and Multi-component Diffusion Simulations
    Wierzba, Bartek
    HIGH TEMPERATURE MATERIALS AND PROCESSES, 2017, 36 (05) : 447 - 451
  • [26] On the ambipolar constraint in multi-component diffusion problems
    Peerenboom, K. S. C.
    van Dijk, J.
    Goedheer, W. J.
    vander Mullen, J. J. A. M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (10) : 3651 - 3655
  • [27] Diffusion and phase transformations in multi-component systems
    Inden, G.
    Diffusion and Thermodynamics of Materials, 2007, 263 : 11 - 20
  • [28] Diffusion of elements and vacancies in multi-component systems
    Fischer, F. D.
    Svoboda, J.
    PROGRESS IN MATERIALS SCIENCE, 2014, 60 : 338 - 367
  • [29] The chemistry of multi-component and hierarchical framework compounds
    Feng, Liang
    Wang, Kun-Yu
    Day, Gregory S.
    Zhou, Hong-Cai
    CHEMICAL SOCIETY REVIEWS, 2019, 48 (18) : 4823 - 4853
  • [30] Multi-component structure of the solar transition region
    Peter, H
    SOLAR ENCOUNTER, 2001, 493 : 327 - 330