Program Self-Reference in Constructive Scott Subdomains

被引:0
|
作者
John Case
Samuel E. Moelius
机构
[1] University of Delaware,Department of Computer & Information Sciences
[2] IDA Center for Computing Sciences,undefined
来源
Theory of Computing Systems | 2012年 / 51卷
关键词
Numberings; Recursion theorems; Scott domains; Self-reference; Self-reproducing programs;
D O I
暂无
中图分类号
学科分类号
摘要
Intuitively, a recursion theorem asserts the existence of self-referential programs . Two well-known recursion theorems are Kleene’s Recursion Theorem (krt) and Rogers’ Fixpoint Recursion Theorem (fprt). Does one of these two theorems better capture the notion of program self-reference than the other? In the context of the partial computable functions over the natural numbers (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {PC}$\end{document}), fprt is strictly weaker than krt, in that fprt holds in any effective numbering of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {PC}$\end{document} in which krt holds, but not vice versa. It is shown that, in this context, the existence of self-reproducing programs (a.k.a. quines ) is assured by krt, but not by fprt. Most would surely agree that a self-reproducing program is self-referential. Thus, this result suggests that krt is better than fprt at capturing the notion of program self-reference in\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {PC}$\end{document} .
引用
收藏
页码:22 / 49
页数:27
相关论文
共 50 条