Program Self-Reference in Constructive Scott Subdomains

被引:0
|
作者
John Case
Samuel E. Moelius
机构
[1] University of Delaware,Department of Computer & Information Sciences
[2] IDA Center for Computing Sciences,undefined
来源
Theory of Computing Systems | 2012年 / 51卷
关键词
Numberings; Recursion theorems; Scott domains; Self-reference; Self-reproducing programs;
D O I
暂无
中图分类号
学科分类号
摘要
Intuitively, a recursion theorem asserts the existence of self-referential programs . Two well-known recursion theorems are Kleene’s Recursion Theorem (krt) and Rogers’ Fixpoint Recursion Theorem (fprt). Does one of these two theorems better capture the notion of program self-reference than the other? In the context of the partial computable functions over the natural numbers (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {PC}$\end{document}), fprt is strictly weaker than krt, in that fprt holds in any effective numbering of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {PC}$\end{document} in which krt holds, but not vice versa. It is shown that, in this context, the existence of self-reproducing programs (a.k.a. quines ) is assured by krt, but not by fprt. Most would surely agree that a self-reproducing program is self-referential. Thus, this result suggests that krt is better than fprt at capturing the notion of program self-reference in\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {PC}$\end{document} .
引用
收藏
页码:22 / 49
页数:27
相关论文
共 50 条
  • [21] ON THE SELF-REFERENCE OF YABLO'S PARADOX
    Domanov, Oleg A.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-FILOSOFIYA-SOTSIOLOGIYA-POLITOLOGIYA-TOMSK STATE UNIVERSITY JOURNAL OF PHILOSOPHY SOCIOLOGY AND POLITICAL SCIENCE, 2019, 50 : 245 - 248
  • [22] Self-reference and the acyclicity of rational choice
    Gaifman, H
    ANNALS OF PURE AND APPLIED LOGIC, 1999, 96 (1-3) : 117 - 140
  • [23] Lateral inhibition and self-reference in anticipation
    Steckner, CA
    COMPUTING ANTICIPATORY SYSTEMS, 2000, 517 : 351 - 360
  • [24] Absolute pitch: Self-reference and memory
    Levitin, DJ
    ANNEE PSYCHOLOGIQUE, 2004, 104 (01): : 103 - 120
  • [25] POST MACHINE, SELF-REFERENCE AND PARADOXES
    Nekhaev, Andrei, V
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-FILOSOFIYA-SOTSIOLOGIYA-POLITOLOGIYA-TOMSK STATE UNIVERSITY JOURNAL OF PHILOSOPHY SOCIOLOGY AND POLITICAL SCIENCE, 2018, 46 : 58 - 66
  • [26] How to eliminate self-reference: a precis
    Schlenker, Philippe
    SYNTHESE, 2007, 158 (01) : 127 - 138
  • [27] THE SELF-REFERENCE OF NEGATION IN HEGELIAN LOGIC
    Bordignon, Michela
    VERIFICHE, 2017, 46 (02): : 117 - 137
  • [28] Self-reference as a principal indicator of complexity
    Hempel, Stefan
    Pineda, Ricardo
    Smith, Eric
    COMPLEX ADAPTIVE SYSTEMS, 2011, 6
  • [29] IS THE BAN ON SELF-REFERENCE REALLY NECESSARY?
    Andrushkevich, Alexandr G.
    EPISTEMOLOGY & PHILOSOPHY OF SCIENCE-EPISTEMOLOGIYA I FILOSOFIYA NAUKI, 2023, 60 (03): : 61 - 67
  • [30] ON THE POSSIBILITY OF A GENERAL PURGE OF SELF-REFERENCE
    Rosenblatt, Lucas
    ANALISIS FILOSOFICO, 2012, 32 (01): : 53 - 59